29 research outputs found

    A Horizon Scan of research priorities to inform policies aimed at reducing the harm of plastic pollution to biota

    Get PDF
    Plastic pollution in the oceans is a priority environmental issue. The recent increase in research on the topic, coupled with growing public awareness, has catalyzed policymakers around the world to identify and implement solutions that minimize the harm caused by plastic pollution. To aid and coordinate these efforts, we surveyed experts with scientific experience identified through their peer-reviewed publications. We asked experts about the most pressing research questions relating to how biota interact with plastic pollution that in turn can inform policy decisions and research agendas to best contribute to understanding and reducing the harm of plastic pollution to biota. We used a modified Horizon Scan method that first used a subgroup of experts to generate 46 research questions on aquatic biota and plastics, and then conducted an online survey of researchers globally to prioritize questions in terms of their importance to inform policy development. One hundred and fifteen experts from 29 countries ranked research questions in six themes. The questions were ranked by urgency, indicating which research should be addressed immediately, which can be addressed later, and which are of limited relevance to inform action on plastics as an environmental pollutant. We found that questions relating to the following four themes were the most commonly top-ranked research priorities: (i) sources, circulation and distribution of plastics, (ii) type of harm from plastics, (iii) detection of ingested plastics and the associated problems, and (iv) related economies and policy to ingested plastics. While there are many research questions on the topic of impacts of plastic pollution on biota that could be funded and investigated, our results focus collective priorities in terms of research that experts believe will inform effective policy and on-the-ground conservation.© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

    A threatened species index for Australian birds

    Get PDF
    Quantifying species population trends is crucial for monitoring progress towards global conservation targets, justifying investments, planning targeted responses and raising awareness about threatened species. Many global indicators are slow in response and report on common species, not on those at greatest risk of extinction. Here we develop a Threatened Species Index as a dynamic tool for tracking annual changes in Australia's imperiled birds. Based on the Living Planet Index method and containing more than 17,000 time series for 65 bird taxa surveyed systematically, the index at its second iteration shows an average reduction of 59% between 1985 and 2016, and 44% between 2000 and 2016. Decreases seem most severe for shorebirds and terrestrial birds and least severe for seabirds. The index provides a potential means for measuring performance against the Convention on Biological Diversity's Aichi Target 12, enabling governments, agencies and the public to observe changes in threatened species

    Reconceptualizing conservation

    Get PDF
    Early definitions of conservation focused largely on the end goals of protection or restoration of nature, and the various disciplinary domains that contribute to these ends. Conservation science and practice has evolved beyond being focused on just issues of scarcity and biodiversity decline. To better recognize the inherent links between human behaviour and conservation, “success” in conservation is now being defined in terms that include human rights and needs. We also know that who engages in conservation, and how, dictates the likelihood that conservation science will be embraced and applied to yield conservation gains. Here we present ideas for reconceptualizing conservation. We emphasize the HOW in an attempt to reorient and repurpose the term in ways that better reflect what contemporary conservation is or might aspire to be. To do so, we developed an acrostic using the letters in the term “CONSERVATION” with each serving as an adjective where C = co-produced, O = open, N = nimble, S = solutions-oriented, E = empowering, R = relational, V = values-based, A = actionable, T = transdisciplinary, I = inclusive, O = optimistic, and N = nurturing. For each adjective, we briefly describe our reasoning for its selection and describe how it contributes to our vision of conservation. By reconceptualizing conservation we have the potential to center how we do conservation in ways that are more likely to result in outcomes that benefit biodiversity while also being just, equitable, inclusive, and respectful of diverse rights holders, knowledge holders, and other actors. We hope that this acrostic will be widely adopted in training to help the next generation of conservation researchers and practitioners keep in mind what it will take to make their contributions effective and salient

    Drivers and technology-related obstacles in moving to multichannel retailing

    Get PDF
    Today, multichannel retailing is a key strategic issue for most retailers. Yet, while there are many drivers associated with retailers going multichannel so too are there technology-related obstacles, however, few prior empirical studies explore these themes. In light of this, by using a multi-case approach to understand the key drivers and technology-related obstacles associated with retailers moving to multichannel retailing our study makes two key contributions. First, we extend prior theory by providing novel empirical insights into the main drivers underpinning retailers using a multichannel strategy. We find that meeting customer needs and increasing sales were the primary drivers behind retailers using the strategy, although there is diversity in the way retailers respond to these motives. Second, we provide empirical support for a proposed theoretical framework which summarises the key technology-related obstacles retailers encounter when going multichannel, by stage of implementation. The framework reveals that retailers face technology-related obstacles when implementing a multichannel strategy due to the need to switch/acquire resources and achieve channel integration. Furthermore, the framework highlights that these resource and channel integration issues are often interrelated with each other and with other staff engagement and cultural issues, vary by retailer and stage of implementation, and pose greater obstacles to retailers using new and multiple channels than the extant literature suggests

    Academic conferences urgently need environmental policies

    No full text

    Garbage in guano? Microplastic debris found in faecal precursors of seabirds known to ingest plastics

    No full text
    Plastic pollution is global environmental contaminant. Plastic particulates break down into smaller fragments in the environment, and these small pieces are now commonly found to be ingested by animals. To date, most plastic ingestion studies have focused on assessing retained plastics or regurgitated plastics, but it is likely that animals also excrete plastic and other debris items. We examined the terminal portion of the gastrointestinal tract of a seabird known to commonly ingest plastics, the Northern Fulmar (Fulmarus glacialis), to determine if seabirds excrete microplastics and other debris via their guano. We also examine how guano collections may be used as an indicator of retained plastics. The frequency of occurrence of microplastics did not correlate between the gut and faecal precursor samples, but there was a positive relationship between the number of pieces of plastics in the gut and the number of microplastics in the guano. Our findings suggest that seabirds are acting as vectors of microplastics and debris in the marine environment where their guano accumulates around their colonies. This transport of microplastics and debris by colonial seabirds needs to be further examined, and considered when designing environmental monitoring for microplastics in regions where seabird colonies are found

    Are phthalate ester contaminants in northern fulmar preen oil higher in birds that have ingested more plastic?

    No full text
    Understanding the impacts of plastic pollution is a global research priority. Previous research has shown that plasticizers such as phthalate esters detected in seabird tissues can be useful non-lethal biochemical markers of plastic ingestion as compared with more standard necropsy techniques. We examined the concentrations of six phthalate esters in the preen oil of Northern Fulmars (Fulmarus glacialis) in relation to their retained plastics. Contrary to a previous study, we found that the phthalates examined were not analytically detectable in fulmar preen oil. Given that the birds we examined had up to 100 pieces of plastics in their stomachs, and all uropygial glands were completely emptied during the necropsies, it does not appear that measuring phthalates in preen oil of Northern Fulmars is a useful, non-lethal technique to determine if individuals ingest plastics, at least not currently given the available commercial analytical detection limits

    Are ingested plastics a vector of PCB contamination in northern fulmars from coastal Newfoundland and Labrador?

    No full text
    While marine animals are exposed to environmental contaminants via their prey, because plastic pollution in the aquatic environment can concentrate some chemicals, ingested plastics are thought to increase the exposure of biota to contaminants. Currently, in the literature there are contradictory results relating to how higher levels of ingested plastics by birds may lead to higher levels of polychlorinated biphenyl (PCBs). To date none of these have incorporated known Toxic Equivalency Factors (TEFs) for non-ortho and mono-ortho congeners of PCB which is critical to assessing the potential effects from PCBs. We examined northern fulmars (Fulmarus glacialis) from the Labrador Sea region Canada, and the ingested plastics from these same birds for comparative PCB concentrations. We found no significant correlations between the PCB concentrations in the birds and the mass or number of retained ingested plastic pieces in the stomach, this held true when PCBs were considered by a number of different ways, including ∑PCB, ∑PCB, lower-chlorinated, high-chlorinated, non-ortho PCB, and mono-ortho congeners. PCB concentrations were lower in plastics as compared with livers. We found significant differences in congener profiles between the ingested plastics and seabird livers suggesting that while plastics do not contribute to the PCB concentrations, there may be some interactions between plastics and the chemicals that the birds are exposed to via ingested plastics

    Accounting for direct and indirect cumulative effects of anthropogenic pressures on salmon- and herring-linked land and ocean ecosystems

    No full text
    Salmon and herring support both land and ocean predators and are critical to ecosystem resilience. Their linkages across land and sea realms make them highly susceptible to human activities, which can have flow-on effects up the food web. We quantify and compare the potential cumulative effects of human-driven pressures on interdependent species in salmon- and herringlinked ecosystems of western Canada using a risk assessment methodology. Adding indirect risks resulted in 68% greater total risks for land species than for direct risk alone, versus 15% for marine species. Inclusion of climate change pressures resulted in the greatest change in risk for lowtrophic marine species and habitats (greater than 25% increase). Forestry-related pressures accounted for the highest risk to all species and projected management of these pressures resulted in a total reduction of risk across all ecosystem components that was more than 14% greater than management of fisheries pressures. Ignoring land food web linkages and pressures underestimated cumulative risk by more than 40% for salmon and herring. This simple framework can be used to evaluate potential risk of existing human uses and future change to inform immediate management of linked land-sea ecosystems and help species avoid the 'death by a thousand cuts'. This article is part of the theme issue 'Nurturing resilient marine ecosystems'. </p
    corecore