20 research outputs found

    Differentiation of Vascular Characteristics Using Contrast-Enhanced Ultrasound Imaging

    Get PDF
    Ultrasound contrast imaging has been used to assess tumour growth and regression by assessing the flow through the macro- and micro-vasculature. Our aim was to differentiate the blood kinetics of vessels such as veins, arteries and microvasculature within the limits of the spatial resolution of contrast-enhanced ultrasound imaging. The highly vascularised ovine ovary was used as a biological model. Perfusion of the ovary with SonoVue was recorded with a Philips iU22 scanner in contrast imaging mode. One ewe was treated with prostaglandin to induce vascular regression. Time-intensity curves (TIC) for different regions of interest were obtained, a lognormal model was fitted and flow parameters calculated. Parametric maps of the whole imaging plane were generated for 2 × 2 pixel regions of interest. Further analysis of TICs from selected locations helped specify parameters associated with differentiation into four categories of vessels (arteries, veins, medium-sized vessels and micro-vessels). Time-dependent parameters were associated with large veins, whereas intensity-dependent parameters were associated with large arteries. Further development may enable automation of the technique as an efficient way of monitoring vessel distributions in a clinical setting using currently available scanners.Agência financiadora Medical Research Council UK (MRC) 30800896 Science & Technology Facilities Council (STFC) ST/M007804/1 British Heart Foundation PG/10/021/28254 Life Sciences Discovery Fund 3292512 United States Department of Defense CA160415/PRCRPinfo:eu-repo/semantics/publishedVersio

    Super-Resolution Contrast Enhanced Ultrasound Methodology for the Identification of in-Vivo Vascular Dynamics in 2D

    Get PDF
    \u3cp\u3eObjectives The aim of this study was to provide an ultrasound-based super-resolution methodology that can be implemented using clinical 2-dimensional ultrasound equipment and standard contrast-enhanced ultrasound modes. In addition, the aim is to achieve this for true-to-life patient imaging conditions, including realistic examination times of a few minutes and adequate image penetration depths that can be used to scan entire organs without sacrificing current super-resolution ultrasound imaging performance. Methods Standard contrast-enhanced ultrasound was used along with bolus or infusion injections of SonoVue (Bracco, Geneva, Switzerland) microbubble (MB) suspensions. An image analysis methodology, translated from light microscopy algorithms, was developed for use with ultrasound contrast imaging video data. New features that are tailored for ultrasound contrast image data were developed for MB detection and segmentation, so that the algorithm can deal with single and overlapping MBs. The method was tested initially on synthetic data, then with a simple microvessel phantom, and then with in vivo ultrasound contrast video loops from sheep ovaries. Tracks detailing the vascular structure and corresponding velocity map of the sheep ovary were reconstructed. Images acquired from light microscopy, optical projection tomography, and optical coherence tomography were compared with the vasculature network that was revealed in the ultrasound contrast data. The final method was applied to clinical prostate data as a proof of principle. Results Features of the ovary identified in optical modalities mentioned previously were also identified in the ultrasound super-resolution density maps. Follicular areas, follicle wall, vessel diameter, and tissue dimensions were very similar. An approximately 8.5-fold resolution gain was demonstrated in vessel width, as vessels of width down to 60 μm were detected and verified (λ = 514 μm). Best agreement was found between ultrasound measurements and optical coherence tomography with 10% difference in the measured vessel widths, whereas ex vivo microscopy measurements were significantly lower by 43% on average. The results were mostly achieved using video loops of under 2-minute duration that included respiratory motion. A feasibility study on a human prostate showed good agreement between density and velocity ultrasound maps with the histological evaluation of the location of a tumor. Conclusions The feasibility of a 2-dimensional contrast-enhanced ultrasound-based super-resolution method was demonstrated using in vitro, synthetic and in vivo animal data. The method reduces the examination times to a few minutes using state-of-the-art ultrasound equipment and can provide super-resolution maps for an entire prostate with similar resolution to that achieved in other studies.\u3c/p\u3

    How to perform Contrast-Enhanced Ultrasound (CEUS)

    Get PDF
    "How to perform contrast-enhanced ultrasound (CEUS)" provides general advice on the use of ultrasound contrast agents (UCAs) for clinical decision-making and reviews technical parameters for optimal CEUS performance. CEUS techniques vary between centers, therefore, experts from EFSUMB, WFUMB and from the CEUS LI-RADS working group created a discussion forum to standardize the CEUS examination technique according to published evidence and best personal experience. The goal is to standardise the use and administration of UCAs to facilitate correct diagnoses and ultimately to improve the management and outcomes of patients

    Automatic respiratory gating for contrast ultrasound evaluation of liver lesions

    No full text
    corecore