5 research outputs found

    Disentangling magnetic hardening and molecular spin chain contributions to exchange bias in ferromagnet/molecule bilayers

    Full text link
    We performed SQUID and FMR magnetometry experiments to clarify the relationship between two reported magnetic exchange effects arising from interfacial spin-polarized charge transfer within ferromagnetic metal (FM)/molecule bilayers: the magnetic hardening effect, and spinterface-stabilized molecular spin chains. To disentangle these effects, both of which can affect the FM magnetization reversal, we tuned the metal phthalocyanine molecule central site's magnetic moment to selectively enhance or suppress the formation of spin chains within the molecular film. We find that both effects are distinct, and additive. In the process, we 1) extended the list of FM/molecule candidate pairs that are known to generate magnetic exchange effects, 2) experimentally confirmed the predicted increase in anisotropy upon molecular adsorption; and 3) showed that spin chains within the molecular film can enhance magnetic exchange. This magnetic ordering within the organic layer implies a structural ordering. Thus, by distengangling the magnetic hardening and exchange bias contributions, our results confirm, as an echo to progress regarding inorganic spintronic tunnelling, that the milestone of spintronic tunnelling across structurally ordered organic barriers has been reached through previous magnetotransport experiments. This paves the way for solid-state devices studies that exploit the quantum physical properties of spin chains, notably through external stimuli.Comment: Non

    Rôle d'interfaces sur les propriétés magnétiques des hétérostructures métal ferromagnétique / organique : « exchange bias » et couplage d'échange intercouche en cobalt / métal tétra-phényl porphyrine

    No full text
    In hybrid organic spintronic devices, the active regions are essentially the hybrid interfaces. The first part of this thesis shows that molecular exchange bias in Co/MTPP and Co/CoPc systems is not an interface effect but originates from air-driven oxidation of the Co films. The second part introduces a new Ferromagnetic Nuclear Resonance methodology which showed that 15 monolayers of ZnTPP are required to obtain heterostructures with continuous molecular films and that their morphology depends on the nature of the underlayer (Co or Fe). In addition, the interfaces are asymmetrical with sharp Co/ZnTPP interface and rough ZnTPP/Co interface. These analyses have been confirmed by TEM. Moreover, FNR showed that no interfacial magnetic hardening effect exists in these systems. This is consistent with the fact that the Co/ZnTPP interfaces are governed by weak van der Waals interactions and that no signature of strong chemical bonds between interfacial ZnTPP molecules and Co atoms has been identified. Finally, the magnetic measurements suggest that an antiferromagnetic indirect exchange coupling takes place between the FM electrodes through the organic film.Dans un dispositif spintronique organique hybride, la région active est l'interface hybride. La première partie de cette thèse montre que le biais d'échange moléculaire des systèmes Co/MTPP et Co/CoPc n'est pas un effet d’interface mais provient de l'oxydation des films de Co. La deuxième partie introduit une nouvelle méthodologie en Résonance Nucléaire Ferromagnétique qui montre que 15 monocouches de ZnTPP sont nécessaires pour obtenir des films moléculaires continus et que leur morphologie dépend de la nature du substrat (Feou Co). De plus les interfaces sont asymétriques, l'interface Co/ZnTPP est abrupte alors que l'interface ZnTPP/Co est rugueuse et diffuse. Ces analyses ont été confirmées par TEM. De plus, la FNR n’a montré aucun effet de durcissement magnétique interfacial. C’est cohérent avec le fait que les interfaces Co/ZnTPP sont régies par des interactions faibles de type vander Waals et qu’aucune signature de liaison chimique forte entre les molécules et les atomes de Co n'ai été identifiée. Enfin, les mesures magnétiques ont révélé un couplage d'échange indirect antiferromagnétique entre les électrodes FM au travers des films organiques

    Revealing the morphology and the magnetic properties of single buried cobalt-ZnTPP hybrid interfaces by ferromagnetic nuclear resonance spectroscopy

    No full text
    International audienceThe deeply buried, yet most important part of any spintronic device is the interface. This is even more interesting and much more complex when soft, light materials like organic molecules are in contact with an inorganic metallic electrode. Hence, exceptional care is required to better understand the phenomena driven by this type of organic/inorganic interfaces. To this end, ferromagnetic nuclear resonance (FNR) spectroscopy studies were performed to investigate the morphology and the magnetic properties of the hybrid organic-inorganic interfaces when zinc tetra-phenyl porphyrin (ZnTPP) molecules are at the vicinity of ferromagnetic metallic cobalt (Co) layers. The FNR experimental results show that when ZnTPP is deposited on top of Co the resulting interface is smoother and sharper compared to the more extended interface obtained when Co is deposited on top of ZnTPP. The shape of the spectra suggests that no chemical bonds take place between the interfacial Co atoms and the ZnTPP molecules and that interactions at the interfaces are governed by weak van der Waals forces. Finally, FNR also showed that the magnetic anisotropy at the Co-ZnTPP hybrid interfaces is reduced compared to the magnetic anisotropy of the Co atoms inside the Co films
    corecore