44 research outputs found

    Kinematic Control of the Inertiality of the System of Tycho-2 and UCAC2 Stellar Proper Motions

    Full text link
    Based on the Ogorodnikov-Milne model, we analyze the proper motions of Tycho-2 and UCAC2 stars. We have established that the model component that describes the rotation of all stars under consideration around the Galactic y axis differs significantly from zero at various magnitudes. We interpret this rotation found using the most distant stars as a residual rotation of the ICRS/Tycho-2 system relative to the inertial reference frame. For the most distant (d≈900d\approx900 pc) Tycho-2 and UCAC2 stars, the mean rotation around the Galactic y axis has been found to be M13=−0.37±0.04M_{13}=-0.37\pm0.04 mas yr−1^{-1}. The proper motions of UCAC2 stars with magnitudes in the range 12−15m12-15^m are shown to be distorted appreciably by the magnitude equation in Όαcos⁥Ύ\mu_\alpha\cos\delta, which has the strongest effect for northern-sky stars with a coefficient of −0.60±0.05-0.60\pm0.05 mas yr−1^{-1} mag−1^{-1}. We have detected no significant effect of the magnitude equation in the proper motions of UCAC2 stars brighter than ≈11m\approx11^m.Comment: 15 pages, 6 figure

    Phase models of the Milky Way stellar disc

    Get PDF
    We present a new iterative method for constructing equilibrium phase models of stellar systems. Importantly, this method can provide phase models with arbitrary mass distributions. The method is based on the following principle. Our task is to generate an equilibrium N-body system with a given mass distribution. For this purpose, we let the system reach equilibrium through its dynamical evolution. During this evolution we hold mass distribution in this system. This principle is realized in our method by means of an iterative procedure. We have used our method to construct a phase model of the disc of our Galaxy. In our method, we use the mass distribution in the Galaxy as input data. Here we used two Galactic density models (suggested by Flynn, Sommer-Larsen and Christensen and by Dehnen and Binney). For a fixed-mass model of the Galaxy we can construct a one-parameter family of equilibrium models of the Galactic disc. We can, however, choose a unique model using local kinematic parameters that are known from Hipparcos data. We show that the phase models constructed using our method are close to equilibrium. The problem of uniqueness for our models is discussed, and we discuss some further applications of our method.Comment: 16 pages, 10 figure

    Galactic Rotation Parameters from Data on Open Star Clusters

    Full text link
    Currently available data on the field of velocities Vr, Vl, Vb for open star clusters are used to perform a kinematic analysis of various samples that differ by heliocentric distance, age, and membership in individual structures (the Orion, Carina--Sagittarius, and Perseus arms). Based on 375 clusters located within 5 kpc of the Sun with ages up to 1 Gyr, we have determined the Galactic rotation parameters Wo =-26.0+-0.3 km/s/kpc, W'o = 4.18+-0.17 km/s/kpc^2, W''o=-0.45+-0.06 km/s/kpc^3, the system contraction parameter K = -2.4+-0.1 km/s/kpc, and the parameters of the kinematic center Ro =7.4+-0.3 kpc and lo = 0+-1 degrees. The Galactocentric distance Ro in the model used has been found to depend significantly on the sample age. Thus, for example, it is 9.5+-0.7 kpc and 5.6+-0.3 kpc for the samples of young (50 Myr) clusters, respectively. Our study of the kinematics of young open star clusters in various spiral arms has shown that the kinematic parameters are similar to the parameters obtained from the entire sample for the Carina-Sagittarius and Perseus arms and differ significantly from them for the Orion arm. The contraction effect is shown to be typical of star clusters with various ages. It is most pronounced for clusters with a mean age of 100 Myr, with the contraction velocity being Kr = -4.3+-1.0 km/s.Comment: 14 pages, 4 figures, 2 table

    Superbubble evolution including the star-forming clouds: Is it possible to reconcile LMC observations with model predictions?

    Get PDF
    Here we present a possible solution to the apparent discrepancy between the observed properties of LMC bubbles and the standard, constant density bubble model. A two-dimensional model of a wind-driven bubble expanding from a flattened giant molecular cloud is examined. We conclude that the expansion velocities derived from spherically symmetric models are not always applicable to elongated young bubbles seen almost face-on due to the LMC orientation. In addition, an observational test to differentiate between spherical and elongated bubbles seen face-on is discussed.Comment: 25 pages, 7 figures, accepted to ApJ (September, 1999 issue

    The Parker Instability in 3-D: Corrugations and Superclouds Along the Carina-Sagittarius Arm

    Full text link
    Here we present three-dimensional MHD models for the Parker instability in a thick magnetized disk, including the presence of a spiral arm. The BB-field is assumed parallel to the arm, and the model results are applied to the optical segment of the Carina-Sagittarius arm. The characteristic features of the undular and interchange modes are clearly apparent in the simulations. The undular mode creates large gas concentrations distributed along the arm. This results in a clear arm/inter-arm difference: the instability triggers the formation of large interstellar clouds inside the arms, but generates only small structures with slight density enhancements in the inter-arm regions. The resulting clouds are distributed in an antisymmetric way with respect to the midplane, creating an azimuthal corrugation along the arm. For conditions similar to those of the optical segment of the Carina-Sagittarius arm, it has a wavelength of about 2.4 kpc. This structuring can explain the origin of both HI superclouds and the azimuthal corrugations in spiral arms. The wavelength matches the corrugation length derived with the young stellar groups located in the optical segment of the Carina-Sagittarius arm. Keywords: Galaxy: kinematics and dynamics -- Galaxy: structure -- Instabilities -- ISM: clouds -- ISM: magnetic fields -- ISM: structure -- MHDComment: 29 pages, 12 figures, Latex, Accepted by the Astrophysical Journa

    New Studies of the Pulsar Wind Nebula in the Supernova Remnant CTB 80

    Full text link
    We investigated the kinematics of the pulsar wind nebula (PWN) associated with PSR B1951+32 in the old supernova remnant CTB 80 using the Fabry-Perot interferometer of the 6m Special Astrophysical Observatory telescope. In addition to the previously known expansion of the system of bright filaments with a velocity of 100-200km/s, we detected weak high-velocity features in the H-alpha line at least up to velocities of 400-450km/s. We analyzed the morphology of the PWN in the H-alpha, [SII], and [OIII] lines using HST data and discuss its nature. The shape of the central filamentary shell, which is determined by the emission in the [OIII] line and in the radio continuum, is shown to be consistent with the bow-shock model for a significant (about 60 degrees) inclination of the pulsar's velocity vector to the plane of the sky. In this case, the space velocity of the pulsar is twice higher than its tangential velocity, i.e., it reaches ~500 km/s, and PSR B1951+32 is the first pulsar whose line-of-sight velocity (of about 400 km/s) has been estimated from the PWN observations. The shell-like H-alpha-structures outside the bow shock front in the east and the west may be associated with both the pulsar's jets and the pulsar-wind breakthrough due to the layered structure of the extended CTB 80 shell.Comment: to appear in Astronomy Letters, 12 pages, 6 postscript figures, two in colour; for a version with high resolution figures see http://www.sao.ru/hq/grb/team/vkom/CTB80_fine.pd

    New Wolf-Rayet star and its circumstellar nebula in Aquila

    Full text link
    We report the discovery of a new Wolf-Rayet star in Aquila via detection of its circumstellar nebula (reminiscent of ring nebulae associated with late WN stars) using the Spitzer Space Telescope archival data. Our spectroscopic follow-up of the central point source associated with the nebula showed that it is a WN7h star (we named it WR121b). We analyzed the spectrum of WR121b by using the Potsdam Wolf-Rayet (PoWR) model atmospheres, obtaining a stellar temperature of ~ 50 kK. The stellar wind composition is dominated by helium with ~ 20 per cent of hydrogen. The stellar spectrum is highly reddened (E_{B-V} = 2.85 mag). Adopting an absolute magnitude of M_v = -5.7, the star has a luminosity of log L/Lsun = 5.75 and a mass-loss rate of 10^{-4.7} Msun/yr, and resides in a distance of 6.3 kpc. We searched for a possible parent cluster of WR121b and found that this star is located at ~ 1 degree from the young star cluster embedded in the giant HII region W43 (containing a WN7+a/OB? star -- WR121a). We also discovered a bow shock around the O9.5III star ALS9956, located at ~ 0.5 degree from the cluster. We discuss the possibility that WR121b and ALS9956 are runaway stars ejected from the cluster in W43.Comment: 9 pages, 7 figures, accepted to MNRA

    The Southern Galactic Plane Survey: The Test Region

    Get PDF
    The Southern Galactic Plane Survey (SGPS) is a project to image the HI line emission and 1.4 GHz continuum in the fourth quadrant of the Milky Way at high resolution using the Australia Telescope Compact Array (ATCA) and the Parkes Radio Telescope. In this paper we describe the survey details and goals, present lambda 21-cm continuum data, and discuss HI absorption and emission characteristics of the SGPS Test Region (325.5 deg < l < 333.5 deg; -0.5 deg < b < +3.5 deg). We explore the effects of massive stars on the interstellar medium (ISM) through a study of HI shells and the HI environments of HII regions and supernova remnants. We find an HI shell surrounding the HII region RCW 94 which indicates that the region is embedded in a molecular cloud. We give lower limits for the kinematic distances to SNRs G327.4+0.4 and G330.2+1.0 of 4.3 kpc and 4.9 kpc, respectively. We find evidence of interaction with the surrounding HI for both of these remnants. We also present images of a possible new SNR G328.6-0.0. Additionally, we have discovered two small HI shells with no counterparts in continuum emission.Comment: 17 pages, 7 embedded EPS figures, 10 low-res jpeg figures, uses emulateapj5.sty. Accepted for publication in the Astrophysical Journal. Version with all full resolution figures embedded is available at http://www.astro.umn.edu/~naomi/sgps/papers/SGPS.ps.g

    Pre-Main Sequence stars in the star forming complex Sh 2-284

    Full text link
    Located at the galactic anticenter, Sh 2-284 is a HII region which harbors several young open clusters; Dolidze 25, a rare metal poor (Z~0.004) young cluster, is one of these. Given its association with Sh 2-284, it is reasonable to assume the low metallicity for the whole HII region. Sh~2-284 is expected to host a significant population of Pre-Main Sequence (PMS) stars of both low and intermediate mass stars (Herbig Ae stars). We aim at characterizing these stars by means of a spectroscopic and photometric survey conducted with VIMOS@VLT and complemented with additional optical and infrared observations. In this survey we selected and characterized 23 PMS objects. We derived the effective temperature, the spectral energy distribution and luminosity of these objects; using theoretical PMS evolutionary tracks, with the appropriate metallicity, we estimated the mass and the age of the studied objects. We also estimated a distance of 4 Kpc for Sh 2-284 by using spectroscopic parallax of 3 OB stars. From the age determination we concluded that triggered star formation is in act in this region. Our results show that a significant fraction of the young stellar objects (YSOs) may have preserved their disk/envelopes, in contrast with what is found in other recent studies of low-metallicity star forming regions in the Galaxy. Finally, among the 23 bona fide PMS stars, we identified 8 stars which are good candidates to pulsators of the delta Scuti type.Comment: accepted for publication in MNRA

    Revealing evolved massive stars with Spitzer

    Full text link
    Massive evolved stars loss a large fraction of their mass via copious stellar wind or instant outbursts and during certain evolutionary phases they can be identified via the presence of their circumstellar nebulae. In this paper, we present the results of search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24 Ό\mum data obtained with the Multiband Imaging Photometer for Spitzer. We discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with Luminous Blue Variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozens of these central stars, most of which turns out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs, which in turn would have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen burning O stars and helium burning WR stars. We also report the detection of an arc-like structure attached to the cLBV HD326823 and an arc associated with the LBV R99 (HD269445) in the LMC.Comment: 9 pages, 10 figures, accepted to MNRA
    corecore