28 research outputs found

    Nondestructive evaluation of low-velocity impact-induced damage in basalt-carbon hybrid composite laminates using eddy current-pulsed thermography

    Get PDF
    Recently, basalt-carbon hybrid composite structures have attracted increasing attention due to their better damage tolerance, if compared with carbon fiber-reinforced polymer composites (CFRP). Low-velocity is considered as one of the most severe threats to composite materials as it is usually invisible and it occurs frequently in service. With this regard, nondestructive testing (NDT) techniques, especially emerging modalities, are expected to be an effective damage detection method. Eddy current-pulsed thermography (ECPT), as an emerging NDT technique, was used to evaluate the damage induced by low-velocity impact loading in a CFRP laminate, as well as in two different-structured basalt-carbon hybrid composite laminates. In addition, ultrasonic C-scan and x-ray computed tomography were performed to validate the thermographic results. Pulsed phase thermography, principal component thermography, and partial least squares thermography were used to process the thermal data and to retrieve the damage imagery. Then, a further analysis was performed on the imagery and temperature profile. As a result, it is concluded that ECPT is an effective technique for hybrid composite evaluation. The impact energy tends to create an interlaminar damage in a sandwich-like structure, while it tends to create an intralaminar damage in an intercalated stacking structure

    Comparison of Cooled and Uncooled IR Sensors by Means of Signal-to-Noise Ratio for NDT Diagnostics of Aerospace Grade Composites

    Get PDF
    This work aims to address the effectiveness and challenges of non-destructive testing (NDT) by active infrared thermography (IRT) for the inspection of aerospace-grade composite samples and seeks to compare uncooled and cooled thermal cameras using the signal-to-noise ratio (SNR) as a performance parameter. It focuses on locating impact damages and optimising the results using several signal processing techniques. The work successfully compares both types of cameras using seven different SNR definitions, to understand if a lower-resolution uncooled IR camera can achieve an acceptable NDT standard. Due to most uncooled cameras being small, lightweight, and cheap, they are more accessible to use on an unmanned aerial vehicle (UAV). The concept of using a UAV for NDT on a composite wing is explored, and the UAV is also tracked using a localisation system to observe the exact movement in millimetres and how it affects the thermal data. It was observed that an NDT UAV can access difficult areas and, therefore, can be suggested for significant reduction of time and cost
    corecore