7 research outputs found

    Nutritional impact of elevated calcium transport activity in carrots

    No full text
    Nutrition recommendations worldwide emphasize ingestion of plant-based diets rather than diets that rely primarily on animal products. However, this plant-based diet could limit the intake of essential nutrients such as calcium. Osteoporosis is one of the world's most prevalent nutritional disorders, and inadequate dietary calcium is a known contributor to the pathophysiology of this condition. Previously, we have modified carrots to express increased levels of a plant calcium transporter (sCAX1), and these plants contain ≈2-fold-higher calcium content in the edible portions of the carrots. However, it was unproven whether this change would increase the total amount of bioavailable calcium. In randomized trials, we labeled these modified carrots with isotopic calcium and fed them to mice and humans to assess calcium bioavailability. In mice feeding regimes (n = 120), we measured 45Ca incorporation into bones and determined that mice required twice the serving size of control carrots to obtain the calcium found in sCAX1 carrots. We used a dual-stable isotope method with 42Ca-labeled carrots and i.v. 46Ca to determine the absorption of calcium from these carrots in humans. In a cross-over study of 15 male and 15 female adults, we found that when people were fed sCAX1 and control carrots, total calcium absorption per 100 g of carrots was 41% ± 2% higher in sCAX1 carrots. Both the mice and human feeding studies demonstrate increased calcium absorption from sCAX1-expressing carrots compared with controls. These results demonstrate an alternative means of fortifying vegetables with bioavailable calcium

    Demonstrating zinc and iron bioavailability from intrinsically labeled microencapsulated ferrous fumarate and zinc gluconate Sprinkles in young children.

    No full text
    Nutrient-nutrient interactions are an important consideration for any multiple-micronutrient formulation, including Sprinkles, a home-fortification strategy to control anemia. The objectives of this randomized controlled trial were as follows: 1) to compare the absorption of zinc at 2 doses given as Sprinkles; and 2) to examine the effect of zinc and ascorbic acid (AA) on iron absorption from Sprinkles. Seventy-five children aged 12-24 mo were randomly assigned to the following groups: 1) 5 mg of labeled zinc (67Zn) with 50 mg AA (LoZn group); b) 10 mg of labeled zinc (67Zn) with 50 mg AA (HiZn group); or 3) 5 mg zinc with no AA (control). All groups contained 30 mg of labeled iron (57Fe). Intravenous infusions labeled with 70Zn (LoZn and HiZn groups) and 58Fe (control) were administered. Blood was drawn at baseline, 48 h and 14 d later. The percentage of zinc absorbed did not differ between LoZn (geometric mean = 6.4%; min-max: 1.7-14.6) and HiZn (geometric mean = 7.5%; min-max: 3.3-18.0) groups. However, total zinc absorbed was significantly different between the LoZn (geometric mean = 0.31 mg; min-max: 0.08-0.73) and HiZn (geometric mean = 0.82 mg; min-max: 0.33-1.82) groups (P = 0.0004). Geometric mean percentage iron absorption values did not differ between the LoZn (5.9%; min-max: 0.8-21) and HiZn (4.4%; min-max: 0.6-12.3) groups and between the LoZn and control groups (5.0%; min-max: 1.4-24). We conclude that zinc in the form of Sprinkles has a low bioavailability, yet provides adequate amounts of absorbed zinc in young children, and that there is no effect of zinc or AA on iron absorption from the given formulations of Sprinkles
    corecore