58 research outputs found
A C. elegans Model for Mitochondrial Fatty Acid Synthase II: The Longevity-Associated Gene W09H1.5/mecr-1 Encodes a 2-trans-Enoyl-Thioester Reductase
Our recognition of the mitochondria as being important sites of fatty acid biosynthesis is continuously unfolding, especially in light of new data becoming available on compromised fatty acid synthase type 2 (FASII) in mammals. For example, perturbed regulation of murine 17β-HSD8 encoding a component of the mitochondrial FASII enzyme 3-oxoacyl-thioester reductase is implicated in polycystic kidney disease. In addition, over-expression in mice of the Mecr gene coding for 2-trans-enoyl-thioester reductase, also of mitochondrial FASII, leads to impaired heart function. However, mouse knockouts for mitochondrial FASII have hitherto not been reported and, hence, there is a need to develop alternate metazoan models such as nematodes or fruit flies. Here, the identification of Caenorhabditis elegans W09H1.5/MECR-1 as a 2-trans-enoyl-thioester reductase of mitochondrial FASII is reported. To identify MECR-1, Saccharomyces cerevisiae etr1Δ mutant cells were employed that are devoid of mitochondrial 2-trans-enoyl-thioester reductase Etr1p. These yeast mutants fail to synthesize sufficient levels of lipoic acid or form cytochrome complexes, and cannot respire or grow on non-fermentable carbon sources. A mutant yeast strain ectopically expressing nematode mecr-1 was shown to contain reductase activity and resemble the self-complemented mutant strain for these phenotype characteristics. Since MECR-1 was not intentionally targeted for compartmentalization using a yeast mitochondrial leader sequence, this inferred that the protein represented a physiologically functional mitochondrial 2-trans-enoyl-thioester reductase. In accordance with published findings, RNAi-mediated knockdown of mecr-1 in C. elegans resulted in life span extension, presumably due to mitochondrial dysfunction. Moreover, old mecr-1(RNAi) worms had better internal organ appearance and were more mobile than control worms, indicating a reduced physiological age. This is the first report on RNAi work dedicated specifically to curtailing mitochondrial FASII in metazoans. The availability of affected survivors will help to position C. elegans as an excellent model for future pursuits in the emerging field of mitochondrial FASII research
Odd Chain Fatty Acids; New Insights of the Relationship Between the Gut Microbiota, Dietary Intake, Biosynthesis and Glucose Intolerance
Recent findings have shown an inverse association between circulating C15:0/C17:0 fatty acids with disease risk, therefore, their origin needs to be determined to understanding their role in these pathologies. Through combinations of both animal and human intervention studies, we comprehensively investigated all possible contributions of these fatty acids from the gut-microbiota, the diet, and novel endogenous biosynthesis. Investigations included an intestinal germ-free study and a C15:0/C17:0 diet dose response study. Endogenous production was assessed through: a stearic acid infusion, phytol supplementation, and a Hacl1 mouse model. Two human dietary intervention studies were used to translate the results. Finally, a study comparing baseline C15:0/C17:0 with the prognosis of glucose intolerance. We found that circulating C15:0/C17:0 levels were not influenced by the gut-microbiota. The dose response study showed C15:0 had a linear response, however C17:0 was not directly correlated. The phytol supplementation only decreased C17:0. Stearic acid infusion only increased C17:0. Hacl1 only decreased C17:0. The glucose intolerance study showed only C17:0 correlated with prognosis. To summarise, circulating C15:0 and C17:0 are independently derived; C15:0 correlates directly with dietary intake, while C17:0 is substantially biosynthesized, therefore, they are not homologous in the aetiology of metabolic disease. Our findings emphasize the importance of the biosynthesis of C17:0 and recognizing its link with metabolic disease.The authors are grateful to the Medical Research Council for core funding (Lipid Profiling and Signalling programme grant; number UD99999906, Cambridge Lipidomics Biomarker Research Initiative; grant G0800783, MRC Human Nutrition Research PhD programme). Grant GAČR: GA15–09518S and grant Czech Science Foundation GACR: 16-06326S funded part of the gut microbiota investigation. The authors would like to acknowledge the USDA (ACNC-USDA-CRIS 6251-51000-005-03S) for funding of the dose response animal study within this manuscript. The Human study “Dairy Fat supplementation” was supported by research grants from the Hospices Civils de Lyon (Actions Incitatives); from the Programme Hospitalier de Recherche Clinique Interregional; from the Agence Nationale de la Recherche (Programme de Recherche en Nutrition Humaine and the Programme National de Recherche en Alimentation); and from the Innovation Stratégique Industrielle program of the Agence pour l’Innovation OSEO (Innovation Thérapeutique – Diabète project). K. Seyssel and M. Alligier were recipients of a doctoral fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche (France). The phytol supplementation animal study was supported by grants from the Academy of Finland (138690), the Sigrid Juselius Foundation and NordForsk under the Nordic Centres of Excellence Programme in Food, Nutrition and Health, project “Mitohealth” (070010). The NIH Grant R01-DK-18243 for funding of the canine study. HACL1 knockout mouse model was supported by grants from the Flemish “Fonds Wetenschappelijk Onderzoek” (G.0721.10N) and KU Leuven (OT/14/100)
Entrepreneurial intention among University students in Malaysia: integrating self-determination theory and the theory of planned behavior
The present study endeavors to develop a deeper understanding of the motivational processes involved in intentional entrepreneurial behavior. For this purpose, it integrates the social cognitive approach of the theory of planned behavior (TPB) and the organismic theory of motivation of self-determination theory (SDT). More specifically, it tests the role of basic psychological needs of autonomy, competence and relatedness as defined in SDT in shaping university students’ attitudes and intentions toward entrepreneurship. The sample of this study consisted of 438 (Males = 166, Females =272) 3rd and4th year university students from four Malaysian Public Universities. The results of the study show that the model strongly explains about 71% of the variance in entrepreneurial intention. Basic psychological needs of autonomy, competence and relatedness have a strong indirect impact on entrepreneurial intention via their attitudinal antecedents: attitude,subjective norm, and perceived behavioral control. This indicates a full-mediational model,where the attitudinal factors operated as transmitters of effects from the distal constructs ofSDT on entrepreneurial intention. These findings confirm that both SDT and the TPB provide complementary explanations of the motivational processes of entrepreneurial behavior. The study contributes to the existing knowledge by providing a theory-based understanding of the role of motivations in the formation of entrepreneurial intentions. It opens the way for future research to analyze how alternative motivations may affect new venture creation, survival and success
Odd chain fatty acids; New insights of the relationship between the gut microbiota, dietary intake, biosynthesis and glucose intolerance
Recent findings have shown an inverse association between circulating C15:0/C17:0 fatty acids with disease risk, therefore, their origin needs to be determined to understanding their role in these pathologies. Through combinations of both animal and human intervention studies, we comprehensively investigated all possible contributions of these fatty acids from the gut-microbiota, the diet, and novel endogenous biosynthesis. Investigations included an intestinal germ-free study and a C15:0/C17:0 diet dose response study. Endogenous production was assessed through: a stearic acid infusion, phytol supplementation, and a Hacl1-/- mouse model. Two human dietary intervention studies were used to translate the results. Finally, a study comparing baseline C15:0/C17:0 with the prognosis of glucose intolerance. We found that circulating C15:0/C17:0 levels were not influenced by the gut-microbiota. The dose response study showed C15:0 had a linear response, however C17:0 was not directly correlated. The phytol supplementation only decreased C17:0. Stearic acid infusion only increased C17:0. Hacl1-/- only decreased C17:0. The glucose intolerance study showed only C17:0 correlated with prognosis. To summarise, circulating C15:0 and C17:0 are independently derived; C15:0 correlates directly with dietary intake, while C17:0 is substantially biosynthesized, therefore, they are not homologous in the aetiology of metabolic disease. Our findings emphasize the importance of the biosynthesis of C17:0 and recognizing its link with metabolic disease
- …