248 research outputs found

    Investigating the significance of coagulation kinetics on maintaining membrane permeability in an MBR following reactive coagulant dosing

    Get PDF
    In this study, the impact of kinetically controlled floc growth on sustaining membrane permeability following reactive coagulant dosing was determined using a model particle system. Floc formation was indicated to comprise of two stages following coagulant addition: (i) an initial destabilisation phase which encouraged complexation of protein and polysaccharide; and (ii) entrapment of the coarse model particles (3 ”m Firefliℱ microspheres) in the polymeric complex during the floc growth phase. Floc growth was characterised by an expected time lag as with conventional flocculation systems and biopolymer aggregation was kinetically favoured. When coagulant was dosed during the filtration cycle, the intermediate biopolymer aggregates (comprised of protein and polysaccharide) were preferentially transported toward the membrane increasing fouling. However, when coagulant was dosed at the onset of filtration, membrane fouling was constrained. It is asserted that by dosing at the onset of filtration: (i) early development of biopolymer aggregation is initiated which inhibits transport of the individual biopolymers to the membrane; and (ii) by dosing coagulant in the absence of a developed polarised layer, formation of biopolymer complexes local to the membrane is obviated. However, when dosing coagulant at the onset of filtration, only limited floc growth occurred which can be explained by the low applied wall shear rate and the absence of a ‘polarised’ region which ostensibly promoted floc growth when coagulant was dosed mid-filtration. Based on results from the model particle system studied, it is proposed that reactive coagulant dosing is best undertaken when: (i) filtration is stopped; (ii) modest shear is applied within the bioreactor to promote coagulant dispersion; and (iii) sufficient contact time is allowed to promote floc growth before commencement of filtration

    Controlling shell-side crystal nucleation in a gas-liquid membrane contactor for simultaneous ammonium bicarbonate recovery and biogas upgrading

    Get PDF
    A gas–liquid hollow fibre membrane contactor (HFMC) process has been introduced for carbon dioxide (CO2) separation from biogas where aqueous ammonia (NH3) is used to chemically enhance CO2 absorption and initiate heterogeneous nucleation of the reaction product ammonium bicarbonate at the membrane–solvent interface. Aqueous ammonia absorbents (2–7 M) were initially used in single pass for CO2 separation from a synthetic biogas where nucleation of ammonium bicarbonate crystals was observed at the perimeter of the micropores. Recirculation of the aqueous ammonia absorbent encouraged the growth of ammonium bicarbonate crystals on the shell-side of the membrane that measured several microns in diameter. However, at high aqueous NH3 concentrations (3–7 M), lumen side crystallisation occurred and obstructed gas flow through the lumen of the HFMC. The suggested mechanism for lumen-side crystallisation was absorbent breakthrough into the lumen due to pore wetting which was promoted by low absorbent surface tension at high NH3 concentration. Preferential shell-side nucleation can therefore be promoted by (1) raising surface tension of the absorbent and (2) selection of a membrane with a more regulated pore shape than the PTFE membrane used (d/L 0.065) as both actions can diminish solvent ingress into the pore. This was evidenced using 2 M NH3 absorbent where shell-side crystallisation was evidenced without the onset of lumen side crystallisation. Raising surface tension through the inclusion of salt into the chemical absorbent also promoted greater CO2 flux stability. Importantly, this study demonstrates that chemically enhanced HFMC are an attractive prospect for gas–liquid separation applications where reaction product recovery offers further economic value

    Symbolic evaluation of integrals occurring in accelerator orbit theory

    Get PDF
    AbstractDefinite integrals which appear in the perturbation theory of a particle's transverse oscillations and chromatic aberrations inside an accelerator are evaluated by symbolic computation. The symbolic program and the automatic FORTRAN coding of the generated functions are described. The results are checked by comparison with those obtained by direct numerical integration. It turns out that, once having established the FORTRAN function subprograms symbolically, their use for different parameters requires much less time than direct numerical integration

    PS-XXI, a new synchrotron for the LHC injector

    Get PDF
    The CERN PS is the oldest link in the LHC injector chain. A separate function substitute synchrotron is discussed. It would keep the versatility of the present machine and have a higher extraction energy to relax the tolerance on the microwave instability threshold at injection into the SPS. Its essential property would be an adjustable h variation near the isochronous regime to meet the requirements imposed by bunch compression at ejection. It would also be equipped with all the correction systems of a modern machine

    Toward CP-even Neutrino Beam

    Full text link
    The best method of measuring CP violating effect in neutrino oscillation experiments is to construct and use a neutrino beam made of an ideal mixture of Μˉe\bar{\nu}_e and Îœe\nu_e of monochromatic lines. The conceptual design of such a beam is described, together with how to measure the CP-odd quantity. We propose to exploit an accelerated unstable hydrogen-like heavy ion in a storage ring, whose decay has both electron capture and bound beta decay with a comparable fraction.Comment: 6 pages, 2 figures, Published versio

    Physics Reach of Electron-Capture Neutrino Beams

    Get PDF
    To complete the picture of neutrino oscillations two fundamental parameters need to be measured, theta13 and delta. The next generation of long baseline neutrino oscillation experiments -superbeams, betabeams and neutrino factories- indeed take aim at measuring them. Here we explore the physics reach of a new candidate: an electron-capture neutrino beam. Emphasis is made on its feasibility thanks to the recent discovery of nuclei that decay fast through electron capture, and on the interplay with a betabeam (its closest relative).Comment: 5 pages, 3 png figures. Talk given at the 7th International Workshop on Neutrino Factories and Superbeams (NuFact 05), Frascati, Italy, June 200

    Neutrino-nucleus interaction rates at a low-energy beta-beam facility

    Full text link
    We compute the neutrino detection rates to be expected at a low-energy beta-beam facility. We consider various nuclei as neutrino detectors and compare the case of a small versus large storage ring.Comment: 6 pages, 3 figure

    The FFAG R&D and medical application project RACCAM

    Get PDF
    JACoW web site http://accelconf.web.cern.ch/AccelConf/e06/Pre-Press/WEPCH161.pdf WEPCH161International audienceThe RACCAM project (Recherche en ACCelerateurs et Applications Medicales) has recently obtained fundings, extending over three years (2006-2008), from the French National Research Agency (ANR). RACCAM is a tripartite collaboration, involving (i) the CNRS Laboratory IN2P3/LPSC, (ii) the French magnet industrial SIGMAPHI, and (iii) the nuclear medecine Departement of Grenoble Hospital. The project concerns fixed field alternating gradient accelerator (FFAG) research on the one hand, and on the other hand their application as hadrontherapy and biology research machines. RACCAM's goal is three-fold, (i) participate to the on-going international collaborations in the field of FFAGs and recent concepts of "non-scaling" FFAGs, with frames for instance, the Neutrino Factory (NuFact) and the EMMA project of an electron model of a muon FFAG accelerator, (ii) design, build and experiment a prototype of an FFAG magnet proper to fulfil the requirements of rapid cycling acceleration, (iii) develop the concepts, and show the feasibility, of the application of such FFAG beams to hadrontherapy and to biology research

    Tectonic evolution of the Colorado Basin, offshore Argentina, inferred from seismo-stratigraphy and depositional rates analysis

    No full text
    International audienceBased on a dense 2D seismic reflection dataset and information from 8 exploration wells, we reinterpreted the stratigraphic evolution of the Colorado Basin. The basin is located on the continental shelf and slope within 50 to 2250 m of bathymetry. The total sediment fill can be up to 16,000 m. Seismic-to-well log correlations provide a chrono-stratigraphic framework for the interpreted seismic sequences. We show that the Colorado Basin records the development of a Permian pre-rift period, a Triassic/Jurassic to Early Cretaceous rift phase and a Lower Cretaceous to Tertiary drift phase. This passive margin represents the evolution of lithospheric extension from active rifting to the thermal subsidence/drift stage. Several Cretaceous to Cenozoic slumping episodes were identified and related to progradation of the sequences and sediment build-up in the slope, as well as to the development of seaward dipping extensional faults
    • 

    corecore