
J. Symbolic Computation (1989) 7, 183-187

Symbolic Evaluation of Integrals Occurring in
Accelerator Orbit Theory

B. A U T I N and J. BENGTSSON

CERN, Geneva, Switzerland

(Received 4 February 1987)

Definite integrals which appear in the perturbation theory of a particle's transverse oscillations
and ehromatic aberrations inside an accelerator are evaluated by symbolic computation. The
symbolic program and the automatic FORTRAN coding of the generated functions are
described. The results are checked by comparison with those obtained by direct numerical
integration. It turns out that, once having established the FORTRAN function subprograms
symbolically, their use for different parameters requires much less time than direct numerical
integration.

1. Statement of the Problem

The transverse motion along a reference curve for a particle in an accelerator can be
described by the two second-order differential equations (Courant & Snyder, 1958) :

d2x
d 7 + Kx(s)x = fx(X, y),

d2Y +Ky(s)y -- fy(x, y), (1)
ds 2

where s is the distance along the reference curve and x = x(s) and y = y(s) are the horizontal
and vertical deviations from the reference curve. The restoring forces Kx and Ky are piecewise
constant functions alternating between positive, negative and zero values with K.~ = - K y ,
and fx(x, y, s) and fy(x, y, s) are polynomials in x and y for a given interval of s. One way
of solving these equations consists of applying a method of successive approximations,
starting from the solutions of the (uncoupled) homogeneous equations

x = ~ c o s (#x(s)+~Ox),

iid #x(s) = /fi(s'), (2)

where J~ and (px are constants given by the initial conditions, fix(S) the amplitude function
and #x(S) the phase advance. We have a similar solution for the vertical plane.

The solutions obtained in this way can be composed by integrals of the following type
(Autin & Bengtsson, 1988; Autin, 1987) :

ls,c = lL(s)fi/s)Dk ~ J(s) ~"oos [m(m(s) +~x,) + n(~,,(s) + ~,)] ds, (3)

183
0747-7171/89/020183 + 05 $03.00/0 �9 1989 Academic Press Limited

184 B. Autin and J. Bengtsson

where k and l are non-negative integers or half-integers, m and n are integers, j = 0, 1, 2,
and #.~, and &., are constant. For j = 0 these integrals are called 'betatron' integrals.

It is clear that the solutions of (2) depend on the value of K.,. and Ky. In detail we have :

1.1.K~= K,.= K=O

cos ~(,) = ~ - (~ , /v~ ,)~ ,

~v/~ s in #(s) = ~/,/~,,
fl(S) = fl,--2~lS-t-ylS '~,

D(s) = DI + sD'l,

where a~, fl~, ~ , D~ and D] are parameters.

(4a)

(4b)

(4c)

(4d)

1.2. K~ = -K. , .=K>O

~ c o s ~ , ~ (s) = ~ c o s (,/-s ~"' - . - = - s in (~/Ks), (5a)
x/Kit.,,

sin ft,.(s) = _ 1 sin (x/Ks), (5b)
,/KIJ.,.,

1 ('Y.,., ~ 1 ('Y.,.., ~ /S,,--K)OOS(2,,/K=)-- ~ v I
@ sin (2x/Ks),
x /K

. - - _ sinh (x/~'s),

(5c)

= c o s h

sin #, (s) = sinh (x/Ks), (5e)

1 (/~.,, _ ~,,,,'~
P,,(~) = ~ - , , /~ .

O
l

D(s) = D, cos (x/~s) + --~- sin (x/Ks).
, / K

(5g)

1.3. K.~ = - K y = K < O

~Vl J
cos/x~(s) -- ~ c o s h (I,v/~S) - r ~ _ _ s i n h (x/[K]s), (6a)

x/IK[flx,

1
sin/x.~(s) = ~ sinh (~ s) , (6b)

/L.(,) = ~ / L , - ~-~1+ ~ / L , - ~/ IKI
~) o o s h (2 [x / ~ s) - a x ' sinh(2 [x / ~ s), (6c)

Accelerator Orbit Theory 185

~, ,(s)cOS#y(S) = . ~ y , COS([~ s) - c% _ s i n (~ / ~ s) , (6d)

1
x/fly(Si sin #,,(s) - - - - - s i n (x /~ is) , (6e)

= 1 fl(7y , ' 1 (fly _ i_~])cos (2] x / ~ s) . c~Y--!'-sin (2 Ix /~s) , (60 g,(s) ~ \ , , - /Ixl

D(s) = D, cosh (,,,/]~s) + D'I sinh (x /~is) , (6g)

where ~ , , fix,, Yx,, ey,, fly,, Yy,, D~, D'l and Kare constants.

2. Strategy for the Evaluation of Is, c

A straightforward evaluation of the integrals (3) using the integration facilities in existing
symbolic algebra systems like the INT operator in REDUCE (Hearn, 1983) is not feasible
This is essentially due to the appearance of a trigonometric factor with compared arguments
in the integrand. The problem may be solved by the following strategy.

We first expand the factor

into a polynomial in sin #.,.(s), cos #.,(s), sin #y(S), cos #,(s) by using

sin (aj + ~2) = sin el cos e2 + cos ~ sin ~2,

cos (al +u2) = cos~l cos ~2-s in~l sin ~z, (7)

and by applying repeatedly, depending on m and n,

sin (ks) = sin ~ cos (k - 1)~ + cos ~ sin (k - 1)~,

cos (k~) = cos ~ cos (k - I) ~ - sin ~ sin (k - 1)~. (9)

Then we replace the products ~x/~x(S) cos #x(s), etc. by their representations (4)-(6),
respectively. It follows from these formulae that these substitutions also eliminate the factor

k I flx(s)fly(S) in the case k = m/2, l = n/2. For the other cases, relations (4c), (5c), (Sf) and
(6c), (6f) have to be used in addition. By this procedure, the integrand has been transformed
into a polynomial in s if K = 0, or into a polynomial in trigonometric and hyperbolic
functions of s if K r 0. It is further simplified by linearizing the trigonometric functions :

sin 2 e = �89 - c o s 2e),

cos 2 ~ = �89 +cos 2~),

sin e cos e = �89 sin 2e,

sinh 2 ~ = �89 (cosh 2 e - I),

cosh 2 ~ = �89 (cosh2e+ 1),

sinh e cosh e = �89 sinh 2e, (9)

and becomes a sum of bilinear terms in trigonometric and hyperbolic functions of s.

186 B. Autin and J. Bengtsson

3. Structure of the Generated Fortran Code

Our purpose is to elaborate a program which performs the integration symbolically and
generates the FORTRAN code for the corresponding integral.

For each integral with given j, k, l, m, n, a FORTRAN function subprogram is generated.
The parameters defined in (4)-(6) are listed in a COMMON block. Due to the large

number of integrals that have to be evaluated we define five global functions with two
parameters like.

DIP(NB, TYPE),

QUD(NB, TYPE),

SXT(NB, TYPE),
OCT(NB, TYPE),

CHR(NB, TYPE),

where NB is an integer referring to a subset of logically connected integrals. TYPE is also
an integer taking the values - 1, 0, + 1 depending on K < 0, K = 0, or K > 0.

4. Implementation of the Symbolic Program

The symbolic program has been implemented in REDUCE. It is composed of an
integration procedure (INTS) followed by a FORTRAN coding of the integral (FCODE).
The integration procedure is called with given values of j, k, l, m, n.

4.1. DESCRIPTION OF THE SYMBOLIC PROGRAM

The symbolic integration (INTS) resumes the logical steps defined in section 2, namely :

(1) fix(s), fly(s), #.~(s) and #y(s) are defined.
(2) Rules (7) and (8) are applied.
(3) Relations (4), (5), (6) are defined and applied according to TYPE.
(4) Substitution of (p = x//Ks if TYPE = 2, 3.
(5) Rules (9) are applied.
(6) Integration by INT and substitution of limits 0, L.

Note that step (4) was introduced in order to overcome certain difficulties with the LET
command in REDUCE. The LET rule could not be applied to all occurrences without this
substitution.

The FORTRAN code mainly contains WRITE-statements for the definition of the
function and of the COMMON-block containing the parameters and for the declaration
of the variables. REDUCE automatically divides the expression into multiple FORTRAN
statements if the number of lines for one statement exceeds a specified number.

Finally, the main program consists of a series of calls to the two procedures preceded by
definitions of the constants in each case. When the program is executed the result is stored
in two files containing the intermediate results during the integration on one hand, and the
FORTRAN functions on the other hand.

4.2. COMPARISON WITH NUMERICAL INTEGRATION

To check the symbolic calculations we have compared the results deduced from the
symbolic calculation with a numerical integration using Romberg's method (Dahlqvist &
Bj6rk, 1979).

Accelerator Orbit Theory 187

Table 1. CPU time (ms).

Integral K~ = - K y = K > 0 K = 0

Optimized Non-optimized Numerical Optimized Non-optimized Numerical
j, k, l, m, n code code integration code code integration

0, 3/2, 0, 1, 0 1 3 6 I 2 19
0, 1/2, l, 1, 0 2 3 94 2 I 15
0, 3/2, 0, 3, 0 1 3 214 I 2 18
0, 1/2, 1, 1, - 2 4 9 190 1 3 14
0, 1/2, 1, 1, 2 4 9 198 1 3 15

Table 2. CPU time (ms).

Integral K~ = -K~, = K < 0 K = 0

Optimized Non-optimized Numerical Optimized Non-optimized Numerical
j, k, l, m, n code code integration code code integration

0 , 2 , 0 , 2 , 0 2 4 181 2 1 30
0, I, I, 2, 0 4 6 180 1 2 28
0 , 2 , 0 , 4 , 0 2 5 191 I 1 28
0, 1, l, 2, - 2 6 18 178 1 4 24
0, 1, 1, 2, 2 6 18 191 2 5 27
0, 1, 1 ,0 ,2 4 6 184 1 l 28
0 , 0 , 2 , 0 , 2 2 4 181 1 2 28
0, 0, 2, 0, 4 3 6 191 1 2 28

We show in Tables 1 and 2 the CPU time in ms needed to calculate the integral using a
symbolically generated FORTRAN function with optimized code, non-optimized code and
a numerical integration with an accuracy of twelve decimals. The calculations have been
done on a #VAX using double precision.

It follows from these tables that the effort in investing into symbolic computation is of
paramount reward when the problem is repetitive; in our case, once the methodology
had been fixed for one integral, it was just a matter of routine to produce more than one
hundred integrals of similar nature, containing about 5000 lines of FORTRAN code.

References

Autin, B. (1987). Non-linear betatron oscillations. In: Physics of Particle Accelerators, A lP Conf. Proc. 153,
Vol, 2, pp. 288-347. New York.

Autin, B., Bengtsson, J. (1988). Application of symbolic computation to the search of complicated primitives:
the example of the 'beta t ron ' integrals. Comput. Phys. Comm. 48, 181-195.

Courant, E. D., Snyder, H. S. (1958). Theory of alternating gradient synchrotron. Ann. Phys. 3, 1-48.
Dahlqvist, G., Bj6rk, A. (1979). Numerical Methods. Englewood Cliffs, N J: Prentice-Hall.
Hearn, A. C. (1983). REDUCE User's Manual, Version 3.2. Santa Monica, CA: Rand Corporation.

