90 research outputs found
Early development of sleep and brain functional connectivity in term-born and preterm infants
The proper development of sleep and sleep-wake rhythms during early neonatal life is crucial to lifelong neurological well-being. Recent data suggests that infants who have poor quality sleep demonstrate a risk for impaired neurocognitive outcomes. Sleep ontogenesis is a complex process, whereby alternations between rudimentary brain states-active vs. wake and active sleep vs. quiet sleep-mature during the last trimester of pregnancy. If the infant is born preterm, much of this process occurs in the neonatal intensive care unit, where environmental conditions might interfere with sleep. Functional brain connectivity (FC), which reflects the brain's ability to process and integrate information, may become impaired, with ensuing risks of compromised neurodevelopment. However, the specific mechanisms linking sleep ontogenesis to the emergence of FC are poorly understood and have received little investigation, mainly due to the challenges of studying causal links between developmental phenomena and assessing FC in newborn infants. Recent advancements in infant neuromonitoring and neuroimaging strategies will allow for the design of interventions to improve infant sleep quality and quantity. This review discusses how sleep and FC develop in early life, the dynamic relationship between sleep, preterm birth, and FC, and the challenges associated with understanding these processes. Impact Sleep in early life is essential for proper functional brain development, which is essential for the brain to integrate and process information. This process may be impaired in infants born preterm. The connection between preterm birth, early development of brain functional connectivity, and sleep is poorly understood. This review discusses how sleep and brain functional connectivity develop in early life, how these processes might become impaired, and the challenges associated with understanding these processes. Potential solutions to these challenges are presented to provide direction for future research.Peer reviewe
Recommended from our members
Management of Multi Organ Dysfunction in Neonatal Encephalopathy.
Neonatal Encephalopathy (NE) describes neonates with disturbed neurological function in the first post-natal days of life. NE is an overall term that does not specify the etiology of the encephalopathy although it often involves hypoxia-ischaemia. In NE, although neurological dysfunction is part of the injury and is most predictive of long-term outcome, these infants may also have multiorgan injury and compromise, which further contribute to neurological impairment and long-term morbidities. Therapeutic hypothermia (TH) is the standard of care for moderate to severe NE. Infants with NE may have co-existing immune, respiratory, endocrine, renal, hepatic, and cardiac dysfunction that require individualized management and can be impacted by TH. Non-neurological organ dysfunction not only has a negative effect on long term outcome but may also influence the efficacy of treatments in the acute phase. Post resuscitative care involves stabilization and decisions regarding TH and management of multi-organ dysfunction. This management includes detailed neurological assessment, cardio-respiratory stabilization, glycaemic and fluid control, sepsis evaluation and antibiotics, seizure identification, and monitoring and responding to biochemical and coagulation derangements. The emergence of new biomarkers of specific organ injury may have predictive value and improve the definition of organ injury and prognosis. Further evidence-based research is needed to optimize management of NE, prevent further organ dysfunction and reduce neurodevelopmental impairment
Cot-side imaging of functional connectivity in the developing brain during sleep using wearable high-density diffuse optical tomography
Studies of cortical function in newborn infants in clinical settings are extremely challenging to undertake with traditional neuroimaging approaches. Partly in response to this challenge, functional near-infrared spectroscopy (fNIRS) has become an increasingly common clinical research tool but has significant limitations including a low spatial resolution and poor depth specificity. Moreover, the bulky optical fibres required in traditional fNIRS approaches present significant mechanical challenges, particularly for the study of vulnerable newborn infants. A new generation of wearable, modular, high-density diffuse optical tomography (HD-DOT) technologies has recently emerged that overcomes many of the limitations of traditional, fibre-based and low-density fNIRS measurements. Driven by the development of this new technology, we have undertaken the first cot-side study of newborn infants using wearable HD-DOT in a clinical setting. We use this technology to study functional brain connectivity (FC) in newborn infants during sleep and assess the effect of neonatal sleep states, active sleep (AS) and quiet sleep (QS), on resting state FC. Our results demonstrate that it is now possible to obtain high-quality functional images of the neonatal brain in the clinical setting with few constraints. Our results also suggest that sleep states differentially affect FC in the neonatal brain, consistent with prior reports
Sleep State Modulates Resting-State Functional Connectivity in Neonates.
The spontaneous cerebral activity that gives rise to resting-state networks (RSNs) has been extensively studied in infants in recent years. However, the influence of sleep state on the presence of observable RSNs has yet to be formally investigated in the infant population, despite evidence that sleep modulates resting-state functional connectivity in adults. This effect could be extremely important, as most infant neuroimaging studies rely on the neonate to remain asleep throughout data acquisition. In this study, we combine functional near-infrared spectroscopy with electroencephalography to simultaneously monitor sleep state and investigate RSNs in a cohort of healthy term born neonates. During active sleep (AS) and quiet sleep (QS) our newborn neonates show functional connectivity patterns spatially consistent with previously reported RSN structures. Our three independent functional connectivity analyses revealed stronger interhemispheric connectivity during AS than during QS. In turn, within hemisphere short-range functional connectivity seems to be enhanced during QS. These findings underline the importance of sleep state monitoring in the investigation of RSNs
Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: A case study
AbstractSeizures in the newborn brain represent a major challenge to neonatal medicine. Neonatal seizures are poorly classified, under-diagnosed, difficult to treat and are associated with poor neurodevelopmental outcome. Video-EEG is the current gold-standard approach for seizure detection and monitoring. Interpreting neonatal EEG requires expertise and the impact of seizures on the developing brain remains poorly understood. In this case study we present the first ever images of the haemodynamic impact of seizures on the human infant brain, obtained using simultaneous diffuse optical tomography (DOT) and video-EEG with whole-scalp coverage. Seven discrete periods of ictal electrographic activity were observed during a 60 minute recording of an infant with hypoxic–ischaemic encephalopathy. The resulting DOT images show a remarkably consistent, high-amplitude, biphasic pattern of changes in cortical blood volume and oxygenation in response to each electrographic event. While there is spatial variation across the cortex, the dominant haemodynamic response to seizure activity consists of an initial increase in cortical blood volume prior to a large and extended decrease typically lasting several minutes. This case study demonstrates the wealth of physiologically and clinically relevant information that DOT–EEG techniques can yield. The consistency and scale of the haemodynamic responses observed here also suggest that DOT–EEG has the potential to provide improved detection of neonatal seizures
Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy:An overview of the literature
Introduction: The preterm born infant's ability to regulate its cerebral blood flow (CBF) is crucial in preventing secondary ischemic and hemorrhagic damage in the developing brain. The relationship between arterial blood pressure (ABP) and CBF estimates, such as regional cerebral oxygenation as measured by near-infrared spectroscopy (NIRS), is an attractive option for continuous non-invasive assessment of cerebrovascular autoregulation.Areas covered: The authors performed a literature search to provide an overview of the current literature on various current clinical practices and methods to measure cerebrovascular autoregulation in the preterm infant by NIRS. The authors focused on various aspects: Characteristics of patient cohorts, surrogate measures for cerebral perfusion pressure, NIRS devices and their accompanying parameters, definitions for impaired cerebrovascular autoregulation, methods of measurements and clinical implications.Expert commentary: Autoregulation research in preterm infants has reported many methods for measuring autoregulation using different mathematical models, signal processing and data requirements. At present, it remains unclear which NIRS signals and algorithms should be used that result in the most accurate and clinically relevant assessment of cerebrovascular autoregulation. Future studies should focus on optimizing strategies for cerebrovascular autoregulation assessment in preterm infants in order to develop autoregulation-based cerebral perfusion treatment strategies
Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial
Objective To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. Design Phase II randomised, single blinded, parallel clinical trial. Setting Eight tertiary neonatal intensive care units in eight European countries. Participants 166 extremely preterm infants born before 28 weeks of gestation: 86 were randomised to cerebral NIRS monitoring and 80 to blinded NIRS monitoring. The only exclusion criterion was a decision not to provide life support. Interventions Monitoring of cerebral oxygenation using NIRS in combination with a dedicated treatment guideline during the first 72 hours of life (experimental) compared with blinded NIRS oxygenation monitoring with standard care (control).Main outcome measures The primary outcome measure was the time spent outside the target range of 55-85% for cerebral oxygenation multiplied by the mean absolute deviation, expressed in %hours (burden of hypoxia and hyperoxia). One hour with an oxygenation of 50% gives 5%hours of hypoxia. Secondary outcomes were all cause mortality at term equivalent age and a brain injury score assessed by cerebral ultrasonography. Randomisation Allocation sequence 1:1 with block sizes 4 and 6 in random order concealed for the investigators. The allocation was stratified for gestational age (26 weeks).Blinding Cerebral oxygenation measurements were blinded in the control group. All outcome assessors were blinded to group allocation. Results The 86 infants randomised to the NIRS group had a median burden of hypoxia and hyperoxia of 36.1%hours (interquartile range 9.2-79.5%hours) compared with 81.3 (38.5-181.3) %hours in the control group, a reduction of 58% (95% confidence interval 35% to 73%, P<0.001). In the experimental group the median burden of hypoxia was 16.6 (interquartile range 5.4-68.1) %hours, compared with 53.6 (17.4-171.3) %hours in the control group (P=0.0012). The median burden of hyperoxia was similar between the groups: 1.2 (interquartile range 0.3-9.6) %hours in the experimental group compared with 1.1 (0.1-23.4) %hours in the control group (P=0.98). We found no statistically significant differences between the two groups at term corrected age. No severe adverse reactions were associated with the device. Conclusions Cerebral oxygenation was stabilised in extremely preterm infants using a dedicated treatment guideline in combination with cerebral NIRS monitoring.Trial registration ClinicalTrial.gov NCT0159031
Recommendations for neonatologist performed echocardiography in Europe: Consensus Statement endorsed by European Society for Paediatric Research (ESPR) and European Society for Neonatology (ESN)
Contains fulltext :
171351.pdf (Publisher’s version ) (Open Access
A phase II randomized clinical trial on cerebral near-infrared spectroscopy plus a treatment guideline versus treatment as usual for extremely preterm infants during the first three days of life (SafeBoosC): study protocol for a randomized controlled trial
Background: Every year in Europe about 25,000 infants are born extremely preterm. These infants have a 20% mortality rate, and 25% of survivors have severe long-term cerebral impairment. Preventative measures are key to reduce mortality and morbidity in an extremely preterm population. The primary objective of the SafeBoosC phase II trial is to examine if it is possible to stabilize the cerebral oxygenation of extremely preterm infants during the first 72 hours of life through the application of cerebral near-infrared spectroscopy (NIRS) oximetry and implementation of an clinical treatment guideline based on intervention thresholds of cerebral regional tissue saturation rStO2. Methods/Design: SafeBoosC is a randomized, blinded, multinational, phase II clinical trial. The inclusion criteria are: neonates born more than 12 weeks preterm; decision to conduct full life support; parental informed consent; and possibility to place the cerebral NIRS oximeter within 3 hours after birth. The infants will be randomized into one of two groups. Both groups will have a cerebral oximeter monitoring device placed within three hours of birth. In the experimental group, the cerebral oxygenation reading will supplement the standard treatment using a predefined treatment guideline. In the control group, the cerebral oxygenation reading will not be visible and the infant will be treated according to the local standards. The primary outcome is the multiplication of the duration and magnitude of rStO2 values outside the target ranges of 55% to 85%, that is, the ‘burden of hypoxia and hyperoxia’ expressed in ‘%hours’. To detect a 50% difference between the experimental and control group in %hours, 166 infants in total must be randomized. Secondary outcomes are mortality at term date, cerebral ultrasound score, and interburst intervals on an amplitude-integrated electroencephalogram at 64 hours of life and explorative outcomes include neurodevelopmental outcome at 2 years corrected age, magnetic resonance imaging at term, blood biomarkers at 6 and 64 hours after birth, and adverse events. Discussion: Cerebral oximetry guided interventions have the potential to improve neurodevelopmental outcome in extremely preterm infants. It is a logical first step to test if it is possible to reduce the burden of hypoxia and hyperoxia. Trial registration: ClinicalTrial.gov, NCT0159031
Neuroprotective therapies in the NICU in preterm infants:present and future (Neonatal Neurocritical Care Series)
The survival of preterm infants has steadily improved thanks to advances in perinatal and neonatal intensive clinical care. The focus is now on finding ways to improve morbidities, especially neurological outcomes. Although antenatal steroids and magnesium for preterm infants have become routine therapies, studies have mainly demonstrated short-term benefits for antenatal steroid therapy but limited evidence for impact on long-term neurodevelopmental outcomes. Further advances in neuroprotective and neurorestorative therapies, improved neuromonitoring modalities to optimize recruitment in trials, and improved biomarkers to assess the response to treatment are essential. Among the most promising agents, multipotential stem cells, immunomodulation, and anti-inflammatory therapies can improve neural outcomes in preclinical studies and are the subject of considerable ongoing research. In the meantime, bundles of care protecting and nurturing the brain in the neonatal intensive care unit and beyond should be widely implemented in an effort to limit injury and promote neuroplasticity. IMPACT: With improved survival of preterm infants due to improved antenatal and neonatal care, our focus must now be to improve long-term neurological and neurodevelopmental outcomes. This review details the multifactorial pathogenesis of preterm brain injury and neuroprotective strategies in use at present, including antenatal care, seizure management and non-pharmacological NICU care. We discuss treatment strategies that are being evaluated as potential interventions to improve the neurodevelopmental outcomes of infants born prematurely.</p
- …