87 research outputs found

    dDOR Is an EcR Coactivator that Forms a Feed-Forward Loop Connecting Insulin and Ecdysone Signaling

    Get PDF
    SummaryBackgroundMammalian DOR was discovered as a gene whose expression is misregulated in muscle of Zucker diabetic rats. Because no DOR loss-of-function mammalian models are available, we analyze here the in vivo function of DOR by studying flies mutant for Drosophila DOR (dDOR).ResultsWe show that dDOR is a novel coactivator of ecdysone receptor (EcR) that is needed during metamorphosis. dDOR binds EcR and is required for maximal EcR transcriptional activity. In the absence of dDOR, flies display a number of ecdysone loss-of-function phenotypes such as impaired spiracle eversion, impaired salivary gland degradation, and pupal lethality. Furthermore, dDOR knockout flies are lean. We find that dDOR expression is inhibited by insulin signaling via FOXO.ConclusionThis work uncovers dDOR as a novel EcR coactivator. It also establishes a mutual antagonistic relationship between ecdysone and insulin signaling in the fly fat body. Furthermore, because ecdysone signaling inhibits insulin signaling in the fat body, this also uncovers a feed-forward mechanism whereby ecdysone potentiates its own signaling via dDOR

    Akt Phosphorylates Both Tsc1 and Tsc2 in Drosophila, but Neither Phosphorylation Is Required for Normal Animal Growth

    Get PDF
    Akt, an essential component of the insulin pathway, is a potent inducer of tissue growth. One of Akt's phosphorylation targets is Tsc2, an inhibitor of the anabolic kinase TOR. This could account for part of Akt's growth promoting activity. Although phosphorylation of Tsc2 by Akt does occur in vivo, and under certain circumstances can lead to reduced Tsc2 activity, the functional significance of this event is unclear since flies lacking Akt phosphorylation sites on Tsc2 are viable and normal in size and growth rate. Since Drosophila Tsc1, the obligate partner of Tsc2, has an Akt phosphorylation motif that is not conserved in mammals, we investigate here whether Akt redundantly phosphorylates the Tsc complex on Tsc1 and Tsc2. We provide evidence that Akt phosphorylates Tsc1 at Ser533. We show that flies lacking Akt phosphorylation sites on Tsc1 alone, or on both Tsc1 and Tsc2 concurrently, are viable and normal in size. This shows that phosphorylation of the Tsc1/2 complex by Akt is not required for Akt to activate TORC1 and to promote tissue growth in Drosophila

    Drosophila Melted Modulates FOXO and TOR Activity

    Get PDF
    SummaryThe insulin/PI3K signaling pathway controls both tissue growth and metabolism. Here, we identify Melted as a new modulator of this pathway in Drosophila. Melted interacts with both Tsc1 and FOXO and can recruit these proteins to the cell membrane. We provide evidence that in the melted mutant, TOR activity is reduced and FOXO is activated. The melted mutant condition mimics the effects of nutrient deprivation in a normal animal, producing an animal with 40% less fat than normal

    THADA regulates the organismal balance between energy storage and heat production

    Get PDF
    Human susceptibility to obesity is mainly genetic, yet the underlying evolutionary drivers causing variation from person to person are not clear. One theory rationalizes that populations that have adapted to warmer climates have reduced their metabolic rates, thereby increasing their propensity to store energy. We uncover here the function of a gene that supports this theory. THADA is one of the genes most strongly selected during evolution as humans settled in different climates. We report here that THADA knockout flies are obese, hyperphagic, have reduced energy production, and are sensitive to the cold. THADA binds the sarco/ER Ca2+ ATPase (SERCA) and acts on it as an uncoupler. Reducing SERCA activity in THADA mutant flies rescues their obesity, pinpointing SERCA as a key effector of THADA function. In sum, this identifies THADA as a regulator of the balance between energy consumption and energy storage, which was selected during human evolution

    PPP2R5C couples hepatic glucose and lipid homeostasis

    Get PDF
    In mammals, the liver plays a central role in maintaining carbohydrate and lipid homeostasis by acting both as a major source and a major sink of glucose and lipids. In particular, when dietary carbohydrates are in excess, the liver converts them to lipids via de novo lipogenesis. The molecular checkpoints regulating the balance between carbohydrate and lipid homeostasis, however, are not fully understood. Here we identify PPP2R5C, a regulatory subunit of PP2A, as a novel modulator of liver metabolism in postprandial physiology. Inactivation of PPP2R5C in isolated hepatocytes leads to increased glucose uptake and increased de novo lipogenesis. These phenotypes are reiterated in vivo, where hepatocyte specific PPP2R5C knockdown yields mice with improved systemic glucose tolerance and insulin sensitivity, but elevated circulating triglyceride levels. We show that modulation of PPP2R5C levels leads to alterations in AMPK and SREBP-1 activity. We find that hepatic levels of PPP2R5C are elevated in human diabetic patients, and correlate with obesity and insulin resistance in these subjects. In sum, our data suggest that hepatic PPP2R5C represents an important factor in the functional wiring of energy metabolism and the maintenance of a metabolically healthy state

    Dietary stearic acid regulates mitochondria in vivo in humans.

    Get PDF
    Since modern foods are unnaturally enriched in single metabolites, it is important to understand which metabolites are sensed by the human body and which are not. We previously showed that the fatty acid stearic acid (C18:0) signals via a dedicated pathway to regulate mitofusin activity and thereby mitochondrial morphology and function in cell culture. Whether this pathway is poised to sense changes in dietary intake of C18:0 in humans is not known. We show here that C18:0 ingestion rapidly and robustly causes mitochondrial fusion in people within 3 h after ingestion. C18:0 intake also causes a drop in circulating long-chain acylcarnitines, suggesting increased fatty acid beta-oxidation in vivo. This work thereby identifies C18:0 as a dietary metabolite that is sensed by our bodies to control our mitochondria. This could explain part of the epidemiological differences between C16:0 and C18:0, whereby C16:0 increases cardiovascular and cancer risk whereas C18:0 decreases both

    Human MCTS1-dependent translation of JAK2 is essential for IFN-γ immunity to mycobacteria.

    Get PDF
    Human inherited disorders of interferon-gamma (IFN-γ) immunity underlie severe mycobacterial diseases. We report X-linked recessive MCTS1 deficiency in men with mycobacterial disease from kindreds of different ancestries (from China, Finland, Iran, and Saudi Arabia). Complete deficiency of this translation re-initiation factor impairs the translation of a subset of proteins, including the kinase JAK2 in all cell types tested, including T lymphocytes and phagocytes. JAK2 expression is sufficiently low to impair cellular responses to interleukin-23 (IL-23) and partially IL-12, but not other JAK2-dependent cytokines. Defective responses to IL-23 preferentially impair the production of IFN-γ by innate-like adaptive mucosal-associated invariant T cells (MAIT) and γδ T lymphocytes upon mycobacterial challenge. Surprisingly, the lack of MCTS1-dependent translation re-initiation and ribosome recycling seems to be otherwise physiologically redundant in these patients. These findings suggest that X-linked recessive human MCTS1 deficiency underlies isolated mycobacterial disease by impairing JAK2 translation in innate-like adaptive T lymphocytes, thereby impairing the IL-23-dependent induction of IFN-γ
    corecore