13 research outputs found

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Intégration de capacités MIM tridimensionnelles de 35nF/mm2 et au-delà dans des technologies CMOS et BiCMOS

    No full text
    Pour répondre à la miniaturisation incessante des dispositifs électroniques, les dimensions des composants sont constamment réduites. Cette réduction de taille atteint aujourd'hui les composant passifs comme les capacités Métal-Isolant-Métal (MIM), dont la densité doit être augmentée. Face à cette problématique, des capacités MIM tridimensionnelles émergent, permettant ainsi d'atteindre 35nF/mm2 avec un empilement de TiN/Al2O3/TiN. Ce travail de thèse porte sur la modélisation, la caractérisation électrique et l'intégration de ces nouvelles capacités. L'utilisation de diverses méthodes de calcul nous a permis de comprendre l'origine physique de la résistance série de ce type de composant. Les interactions entre le TiN et l'Al2O3 ont de plus été caractérisées électriquement et corrélées au procédé de dépôt du TiN. Enfin, une solution de réalisation est proposée pour atteindre une densité de capacité de l'ordre de 100nF/mm2.GRENOBLE1-BU Sciences (384212103) / SudocSudocFranceF

    Cascode configuration as a substitute to LDE MOSFET for improved electrical mismatch performance

    No full text
    session 10: matchingInternational audienceThe work presented in this paper investigates the possibility of replacing a Lateral Drain Extended MOS (LDEMOS) SOI transistors by a cascode configuration to improve the electrical mismatch performance. The cascode connection of two MOS devices is known to sustain as high drain voltage as LDEMOS SOI transistors and offers the same mismatch robustness of Silicon On Insulator (SOI) MOS transistors. The individual mismatch constants associated to Vt (iA Δvt ), β (iA Δβ/β ) and Id (iA ΔId/Id ) for the presented cascode configuration are shown to have similar values to those reported for individual MOS devices

    Mismatch trends in 20nm gate-last bulk CMOS technology

    No full text
    session posterInternational audienceIn this work Vt and β mismatch for the 20 nm Gate-last bulk CMOS technology are investigated for the first time. Our results indicate that the 20 nm Gate-last technology exhibits significant improvement in the Vt and β mismatch performance as compared to the 28 nm Gate-first counterpart. Furthermore, the evolution of the Vt and β mismatch parameters, iA ΔVt and iA Δβ/β , is analyzed as a function of EOT (Tox) from the 90 nm technology node down to the 20 nm technology node. A clear trend towards a reduction of the y-axis intercept (i.e. offset) of the linear plot iA ΔVt vs EOT is observed from the 28 nm Gate-first technology, with such offset approaching zero for the 20 nm Gate-last technology node. This indicates evidence of a huge decrease in the mismatch contribution of the gate material

    A comparative mismatch study of the 20nm Gate-Last and 28nm Gate-First bulk CMOS technologies

    No full text
    International audienceIn this work the threshold voltage (Vt), the current gain factor (β), and the drain current (ID) mismatch trends for 20 nm Gate-Last bulk CMOS technology integrating High-k/metal gate are investigated. The reported results indicate that the high k/metal Gate-Last technology exhibits a reduced metal gate granularity contribution to the Vt mismatch and good performance in terms of the β mismatch. This study further demonstrates that the ID variability mainly depends on the mismatch trends of Vt and β, and on the contributions of the transconductance divided by the drain current (Gm/ID) and the source drain series resistance (Rsd) terms. The 20 nm Gate-Last technology exhibits significant improvement in the Vt and β mismatch performance as compared to the 28 nm Gate-First counterpart. The evolution of the Vt and β mismatch parameters, iAΔVt and iAΔβ/β, is further analyzed as a function of the electrical oxide thickness EOT (Tox) along the technology nodes from 90 nm to 20 nm. A clear trend towards a reduction of the y-axis intercept (i.e. offset) of the linear plot of iAΔVt as a function of EOT is observed starting at the 28 nm Gate-First technology, with the offset approaching zero for the 20 nm Gate-Last technology node. This observation point out a considerable decrease of the gate material contribution to mismatch performances

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome Associated with COVID-19: An Emulated Target Trial Analysis

    No full text
    International audienc

    Predicting 90-day survival of patients with COVID-19: Survival of Severely Ill COVID (SOSIC) scores

    No full text
    International audienceBackground Predicting outcomes of critically ill intensive care unit (ICU) patients with coronavirus-19 disease (COVID-19) is a major challenge to avoid futile, and prolonged ICU stays. Methods The objective was to develop predictive survival models for patients with COVID-19 after 1-to-2 weeks in ICU. Based on the COVID–ICU cohort, which prospectively collected characteristics, management, and outcomes of critically ill patients with COVID-19. Machine learning was used to develop dynamic, clinically useful models able to predict 90-day mortality using ICU data collected on day (D) 1, D7 or D14. Results Survival of Severely Ill COVID (SOSIC)-1, SOSIC-7, and SOSIC-14 scores were constructed with 4244, 2877, and 1349 patients, respectively, randomly assigned to development or test datasets. The three models selected 15 ICU-entry variables recorded on D1, D7, or D14. Cardiovascular, renal, and pulmonary functions on prediction D7 or D14 were among the most heavily weighted inputs for both models. For the test dataset, SOSIC-7’s area under the ROC curve was slightly higher (0.80 [0.74–0.86]) than those for SOSIC-1 (0.76 [0.71–0.81]) and SOSIC-14 (0.76 [0.68–0.83]). Similarly, SOSIC-1 and SOSIC-7 had excellent calibration curves, with similar Brier scores for the three models. Conclusion The SOSIC scores showed that entering 15 to 27 baseline and dynamic clinical parameters into an automatable XGBoost algorithm can potentially accurately predict the likely 90-day mortality post-ICU admission (sosic.shinyapps.io/shiny). Although external SOSIC-score validation is still needed, it is an additional tool to strengthen decisions about life-sustaining treatments and informing family members of likely prognosis

    Characteristics and prognosis of bloodstream infection in patients with COVID-19 admitted in the ICU: an ancillary study of the COVID-ICU study

    No full text
    International audienceBackground Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-COV 2) and requiring intensive care unit (ICU) have a high incidence of hospital-acquired infections; however, data regarding hospital acquired bloodstream infections (BSI) are scarce. We aimed to investigate risk factors and outcome of BSI in critically ill coronavirus infectious disease-19 (COVID-19) patients. Patients and methods We performed an ancillary analysis of a multicenter prospective international cohort study (COVID-ICU study) that included 4010 COVID-19 ICU patients. For the present analysis, only those with data regarding primary outcome (death within 90 days from admission) or BSI status were included. Risk factors for BSI were analyzed using Fine and Gray competing risk model. Then, for outcome comparison, 537 BSI-patients were matched with 537 controls using propensity score matching. Results Among 4010 included patients, 780 (19.5%) acquired a total of 1066 BSI (10.3 BSI per 1000 patients days at risk) of whom 92% were acquired in the ICU. Higher SAPS II, male gender, longer time from hospital to ICU admission and antiviral drug before admission were independently associated with an increased risk of BSI, and interestingly, this risk decreased over time. BSI was independently associated with a shorter time to death in the overall population (adjusted hazard ratio (aHR) 1.28, 95% CI 1.05–1.56) and, in the propensity score matched data set, patients with BSI had a higher mortality rate (39% vs 33% p = 0.036). BSI accounted for 3.6% of the death of the overall population. Conclusion COVID-19 ICU patients have a high risk of BSI, especially early after ICU admission, risk that increases with severity but not with corticosteroids use. BSI is associated with an increased mortality rate
    corecore