46 research outputs found

    Angle-dependent charge exchange and energy loss of slow highly charged ions in freestanding graphene

    Get PDF
    The scattering of ions in solids is accompanied with momentum transfer and electronic excitations resulting in the slowing down of the ion. The amount of energy transferred in a single scattering event depends on the particular trajectory which can be traced back through the scattering angle. Performing scattering angle dependent measurements of slow highly charged Xe ions transmitted through freestanding single-, bi-, and trilayer graphene allows us to determine the charge exchange and energy loss for different minimal interatomic distances. Interestingly, the charge exchange shows an increase with scattering angle by a factor of less than 2, while the energy loss increases by more than a factor of 10 for 3â—¦ compared to forward direction. Our results can be compared to a time-dependent potential model and show that determination of the stopping cross section is not straightforward even with angle-dependent data at hand

    Comparative study regarding the sputtering yield of nanocolumnar tungsten surfaces under Ar+ irradiation

    Get PDF
    Nanostructured tungsten has been proposed as a promising option for plasma facing materials in future fusion reactors, because compared to conventional tungsten it shows advantages such as a better radiation resistance and, in particular, a retardation of tungsten-fuzz growth. Besides these aspects, the sputtering yield of nanostructured tungsten under ion bombardment is of interest, since it would affect the atomic density of tungsten emitted into the fusion plasma, which leads to radiative heat losses. In this work, we present a multiscale approach for investigating the sputtering yield of nanocolumnar tungsten surfaces under 1 keV and 2 keV Ar irradiation. Our results cover experiments and also computational simulations, which operate either on the basis of the binary collision approximation and ray tracing or use a full molecular dynamics implementation. In our studied case, both computational approaches can predict the sputtering yield of nanocolumnar tungsten surfaces very well. In comparison to flat W, we observe a much reduced dependence on the ion incidence angle, similar as reported for conventional rough surfaces in literature. However, an additional global reduction of the sputtering yield was identified, which can be attributed to geometrical redeposition effects between the separated nanocolumns. These results support the applicability of nanocolumnar tungsten as a first wall coating.Peer reviewe

    Vanishing influence of the band gap on the charge exchange of slow highly charged ions in freestanding single-layer MoS2

    Get PDF
    Charge exchange and kinetic energy loss of slow highly charged xenon ions transmitted through freestanding monolayer MoS2 are studied. Two distinct exit charge state distributions, characterized by high and low charge states, are observed. They are accompanied by smaller and larger kinetic energy losses, as well as scattering angles, respectively. High charge exchange is attributed to two-center neutralization processes, which take place in close impact collisions with the target atoms. Experimental findings are compared to graphene as a target material and simulations based on a time-dependent scattering potential model. Independent of the target material, experimentally observed charge exchange can be modeled by the same electron capture and de-excitation rates for MoS2 and graphene. A common dependence of the kinetic energy loss on the charge exchange for MoS2 as well as graphene is also observed. Considering the similarities of the zero band-gap material graphene and the 1.9 eV band-gap material MoS2, we suggest that electron transport on the femtosecond timescale is dominated by the strong influence of the ion’s Coulomb potential in contrast to the dispersion defined by the material’s band structure

    Pulsed Photoelectric Coherent Manipulation and Detection of N − V Center Spins in Diamond

    Get PDF
    Hybrid photoelectric detection of NV magnetic resonances (PDMR) is anticipated to lead to scalable quantum chip technology. To achieve this goal, it is crucial to prove that PDMR readout is compatible with the coherent spin control. Here we present PDMR MW pulse protocols that filter background currents related to ionization of NS0 defects and achieve a high contrast and S/N ratio. We demonstrate Rabi and Ramsey protocols on shallow nitrogen-implanted electronic grade diamond and the coherent readout of ~ 5 NV spins, as a first step towards the fabrication of scalable photoelectric quantum devices

    Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid

    Get PDF
    Over seventy years ago, Niels Bohr described how the charge state of an atomic ion moving through a solid changes dynamically as a result of electron capture and loss processes, eventually resulting in an equilibrium charge state. Although obvious, this process has so far eluded direct experimental observation. By peeling a solid, such as graphite, layer by layer, and studying the transmission of highly charged ions through single-, bi- and trilayer graphene, we can now observe dynamical changes in ion charge states with monolayer precision. In addition we present a first-principles approach based on the virtual photon model for interparticle energy transfer to corroborate our findings. Our model that uses a Gaussian shaped dynamic polarisability rather than a spatial delta function is a major step in providing a self-consistent description for interparticle de-excitation processes at the limit of small separations

    Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid

    Get PDF
    Over seventy years ago, Niels Bohr described how the charge state of an atomic ion moving through a solid changes dynamically as a result of electron capture and loss processes, eventually resulting in an equilibrium charge state. Although obvious, this process has so far eluded direct experimental observation. By peeling a solid, such as graphite, layer by layer, and studying the transmission of highly charged ions through single-, bi- and trilayer graphene, we can now observe dynamical changes in ion charge states with monolayer precision. In addition we present a first-principles approach based on the virtual photon model for interparticle energy transfer to corroborate our findings. Our model that uses a Gaussian shaped dynamic polarisability rather than a spatial delta function is a major step in providing a self-consistent description for interparticle de-excitation processes at the limit of small separations

    Roadmap on photonic, electronic and atomic collision physics: II. Electron and antimatter interactions

    Get PDF
    We publish three Roadmaps on photonic, electronic and atomic collision physics in order to celebrate the 60th anniversary of the ICPEAC conference. In Roadmap II we focus on electron and antimatter interactions. Modern theoretical and experimental approaches provide detailed insight into the many body quantum dynamics of leptonic collisions with targets of varying complexity ranging from neutral and charged atoms to large biomolecules and clusters. These developments have been driven by technological progress and by the needs of adjacent areas of science such as astrophysics, plasma physics and radiation biophysics. This Roadmap aims at looking back along the road, explaining the evolution of the field, and looking forward, collecting contributions from eighteen leading groups from the field

    Roadmap on photonic, electronic and atomic collision physics: II. Electron and antimatter interactions

    Get PDF
    We publish three Roadmaps on photonic, electronic and atomic collision physics in order to celebrate the 60th anniversary of the ICPEAC conference. In Roadmap II we focus on electron and antimatter interactions. Modern theoretical and experimental approaches provide detailed insight into the many body quantum dynamics of leptonic collisions with targets of varying complexity ranging from neutral and charged atoms to large biomolecules and clusters. These developments have been driven by technological progress and by the needs of adjacent areas of science such as astrophysics, plasma physics and radiation biophysics. This Roadmap aims at looking back along the road, explaining the evolution of the field, and looking forward, collecting contributions from eighteen leading groups from the field
    corecore