1,022 research outputs found

    Efficient Equilibria in Polymatrix Coordination Games

    Get PDF
    We consider polymatrix coordination games with individual preferences where every player corresponds to a node in a graph who plays with each neighbor a separate bimatrix game with non-negative symmetric payoffs. In this paper, we study α\alpha-approximate kk-equilibria of these games, i.e., outcomes where no group of at most kk players can deviate such that each member increases his payoff by at least a factor α\alpha. We prove that for α2\alpha \ge 2 these games have the finite coalitional improvement property (and thus α\alpha-approximate kk-equilibria exist), while for α<2\alpha < 2 this property does not hold. Further, we derive an almost tight bound of 2α(n1)/(k1)2\alpha(n-1)/(k-1) on the price of anarchy, where nn is the number of players; in particular, it scales from unbounded for pure Nash equilibria (k=1)k = 1) to 2α2\alpha for strong equilibria (k=nk = n). We also settle the complexity of several problems related to the verification and existence of these equilibria. Finally, we investigate natural means to reduce the inefficiency of Nash equilibria. Most promisingly, we show that by fixing the strategies of kk players the price of anarchy can be reduced to n/kn/k (and this bound is tight)

    Microscopic description of Coulomb and nuclear excitation of multiphonon states in 40^{40}Ca + 40^{40}Ca collisions

    Get PDF
    We calculate the inelastic scattering cross sections to populate one- and two-phonon states in heavy ion collisions with both Coulomb and nuclear excitations. Starting from a microscopic approach based on RPA, we go beyond it in order to treat anharmonicities and non-linear terms in the exciting field. These anharmonicities and non-linearities are shown to have important effects on the cross sections both in the low energy part of the spectrum and in the energy region of the Double Giant Quadrupole Resonance. By properly introducing an optical potential the inelastic cross section is calculated semiclassically by integrating the excitation probability over all impact parameters. A satisfactory agreement with the experimental results is obtained.Comment: 20 pages, 2 figures, revtex, to be published in Phys. Rev.

    Soft Dipole Modes in Neutron-rich Ni-isotopes in QRRPA

    Full text link
    The soft dipole modes in neutron rich even-even Ni-isotopes are investigated in the quasiparticle relativistic random phase approximation. We study the evolution of strengths distribution, centroid energies of dipole excitation in low-lying and normal GDR regions with the increase of the neutron excess. It is found in the present study that the centroid energies of the soft dipole strengths strongly depend on the thickness of neutron skin along with the neutron rich even-even Ni-isotopes.Comment: 14 pages, 7 figure

    Polarisation Patterns and Vectorial Defects in Type II Optical Parametric Oscillators

    Get PDF
    Previous studies of lasers and nonlinear resonators have revealed that the polarisation degree of freedom allows for the formation of polarisation patterns and novel localized structures, such as vectorial defects. Type II optical parametric oscillators are characterised by the fact that the down-converted beams are emitted in orthogonal polarisations. In this paper we show the results of the study of pattern and defect formation and dynamics in a Type II degenerate optical parametric oscillator for which the pump field is not resonated in the cavity. We find that traveling waves are the predominant solutions and that the defects are vectorial dislocations which appear at the boundaries of the regions where traveling waves of different phase or wave-vector orientation are formed. A dislocation is defined by two topological charges, one associated with the phase and another with the wave-vector orientation. We also show how to stabilize a single defect in a realistic experimental situation. The effects of phase mismatch of nonlinear interaction are finally considered.Comment: 38 pages, including 15 figures, LATeX. Related material, including movies, can be obtained from http://www.imedea.uib.es/Nonlinear/research_topics/OPO

    Fragmentation of exotic oxygen isotopes

    Get PDF
    Abrasion-ablation models and the empirical EPAX parametrization of projectile fragmentation are described. Their cross section predictions are compared to recent data of the fragmentation of secondary beams of neutron-rich, unstable 19,20,21O isotopes at beam energies near 600 MeV/nucleon as well as data for stable 17,18O beams

    Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    Full text link
    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound implications including, but not limited to, (a) Earth formation as a giant gaseous Jupiter-like planet with vast amounts of stored energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal of approximately 300 Earth-masses of primordial gases from the Earth, which began Earth's decompression process, making available the stored energy of protoplanetary compression for driving geodynamic processes, which I have described by the new whole-Earth decompression dynamics and which is responsible for emplacing heat at the mantle-crust-interface at the base of the crust through the process I have described, called mantle decompression thermal-tsunami; and, (c)Uranium accumulations at the planetary centers capable of self-sustained nuclear fission chain reactions.Comment: Invited paper for the Special Issue of Earth, Moon and Planets entitled Neutrino Geophysics Added final corrections for publicatio

    Isotopic Dependence of the Nuclear Caloric Curve

    Get PDF
    The A/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at SIS. A stable beam of 124Sn and radioactive beams of 124La and 107Sn at 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. Chemical freeze-out temperatures are found to be nearly invariant with respect to the A/Z of the produced spectator sources, consistent with predictions for expanded systems. Small Coulomb effects (\Delta T \approx 0.6 MeV) appear for residue production near the onset of multifragmentation.Comment: 11 pages, 3 figures, accepted for publ. in Phys. Rev. Let

    Tracing a phase transition with fluctuations of the largest fragment size: Statistical multifragmentation models and the ALADIN S254 data

    Full text link
    A phase transition signature associated with cumulants of the largest fragment size distribution has been identified in statistical multifragmentation models and examined in analysis of the ALADIN S254 data on fragmentation of neutron-poor and neutron-rich projectiles. Characteristics of the transition point indicated by this signature are weakly dependent on the A/Z ratio of the fragmenting spectator source. In particular, chemical freeze-out temperatures are estimated within the range 5.9 to 6.5 MeV. The experimental results are well reproduced by the SMM model.Comment: 7 pages, 3 figures, Proceedings of the International Workshop on Multifragmentation and Related Topics (IWM2009), Catania, Italy, November 2009

    Particle emission following Coulomb excitation in ultrarelativistic heavy-ion collisions

    Get PDF
    We study nuclear reactions induced by virtual photons associated with Lorentz-boosted Coulomb fields of ultrarelativistic heavy ions. Evaporation, fission and multifragmentation mechanisms are included in a new RELDIS code, which describes the deexcitation of residual nuclei formed after single and double photon absorption in peripheral heavy-ion collisions. Partial cross sections for different dissociation channels, including the multiple neutron emission ones, are calculated and compared with data when available. Rapidity and transverse momentum distributions of nucleons, nuclear fragments and pions, produced electromagnetically, are also calculated. These results provide important information for designing large-rapidity detectors and zero-degree calorimeters at RHIC and LHC. The electromagnetic dissociation of nuclei imposes some constrains on the investigation of exotic particle production in gamma-gamma fusion reactions.Comment: 26 LaTeX pages including 8 figures, uses epsf.st

    Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    Full text link
    We propose to search for neutron halo isomers populated via γ\gamma-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the 4s1/24s_{1/2} or 3s1/23s_{1/2} neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new γ\gamma-beams of high intensity and small band width (\le 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the γ\gamma-decay back to the ground state in the 100 ps-μ\mus range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.Comment: accepted for publication in Applied Physics
    corecore