16 research outputs found
Refractory porcelain enamel passive-thermal-control coating for high-temperature superalloys
Study was conducted to match thermal expansion coefficients thereby preventing enamels from cracking. Report discusses various enamel coatings that are applied to two different high-temperature superalloys. Study may be of interest to manufacturers of chemical equipment, furnaces, and metal components intended for high-temperature applications
The Interface Region Imaging Spectrograph (IRIS)
The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft
provides simultaneous spectra and images of the photosphere, chromosphere,
transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s
temporal resolution and 1 km/s velocity resolution over a field-of-view of up
to 175 arcsec x 175 arcsec. IRIS was launched into a Sun-synchronous orbit on
27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope
that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains
spectra in passbands from 1332-1358, 1389-1407 and 2783-2834 Angstrom including
bright spectral lines formed in the chromosphere (Mg II h 2803 Angstrom and Mg
II k 2796 Angstrom) and transition region (C II 1334/1335 Angstrom and Si IV
1394/1403 Angstrom). Slit-jaw images in four different passbands (C II 1330, Si
IV 1400, Mg II k 2796 and Mg II wing 2830 Angstrom) can be taken simultaneously
with spectral rasters that sample regions up to 130 arcsec x 175 arcsec at a
variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to
emission from plasma at temperatures between 5000 K and 10 MK and will advance
our understanding of the flow of mass and energy through an interface region,
formed by the chromosphere and transition region, between the photosphere and
corona. This highly structured and dynamic region not only acts as the conduit
of all mass and energy feeding into the corona and solar wind, it also requires
an order of magnitude more energy to heat than the corona and solar wind
combined. The IRIS investigation includes a strong numerical modeling component
based on advanced radiative-MHD codes to facilitate interpretation of
observations of this complex region. Approximately eight Gbytes of data (after
compression) are acquired by IRIS each day and made available for unrestricted
use within a few days of the observation.Comment: 53 pages, 15 figure
Risk reduction through community-based monitoring:the vigías of Tungurahua, Ecuador
Since 2000, a network of volunteers known as vigías has been engaged in community-based volcano monitoring, which involves local citizens in the collection of scientific data, around volcán Tungurahua, Ecuador. This paper provides the first detailed description and analysis of this well-established initiative, drawing implications for volcanic risk reduction elsewhere. Based on 32 semi-structured interviews and other qualitative data collected in June and July 2013 with institutional actors and with vigías themselves, the paper documents the origins and development of the network, identifies factors that have sustained it, and analyses the ways in which it contributes to disaster risk reduction. Importantly, the case highlights how this community-based network performs multiple functions in reducing volcanic risk. The vigías network functions simultaneously as a source of observational data for scientists; as a communication channel for increasing community awareness, understanding of hazard processes and for enhancing preparedness; and as an early warning system for civil protection. Less tangible benefits with nonetheless material consequences include enhanced social capital – through the relationships and capabilities that are fostered – and improved trust between partners. Establishing trust-based relationships between citizens, the vigías, scientists and civil protection authorities is one important factor in the effectiveness and resilience of the network. Other factors discussed in the paper that have contributed to the longevity of the network include the motivations of the vigías, a clear and regular communication protocol, persistent volcanic activity, the efforts of key individuals, and examples of successful risk reduction attributable to the activities of the network. Lessons that can be learned about the potential of community-based monitoring for disaster risk reduction in other contexts are identified, including what the case tells us about the conditions that can affect the effectiveness of such initiatives and their resilience to changing circumstances
Global Diversity of Ascidiacea
The class Ascidiacea presents fundamental opportunities for research in the fields of development, evolution, ecology, natural products and more. This review provides a comprehensive overview of the current knowledge regarding the global biodiversity of the class Ascidiacea, focusing in their taxonomy, main regions of biodiversity, and distribution patterns. Based on analysis of the literature and the species registered in the online World Register of Marine Species, we assembled a list of 2815 described species. The highest number of species and families is found in the order Aplousobranchia. Didemnidae and Styelidae families have the highest number of species with more than 500 within each group. Sixty percent of described species are colonial. Species richness is highest in tropical regions, where colonial species predominate. In higher latitudes solitary species gradually contribute more to the total species richness. We emphasize the strong association between species richness and sampling efforts, and discuss the risks of invasive species. Our inventory is certainly incomplete as the ascidian fauna in many areas around the world is relatively poorly known, and many new species continue to be discovered and described each year
Communicating Information on Eruptions and Their Impacts from the Earliest Times Until the Late Twentieth Century
Volcanoes hold a fascination for human beings and, before they were recorded by literate observers, eruptions were portrayed in art, were recalled in legends and became incorporated into religious practices: being viewed as agents of punishment, bounty or intimidation depending upon their state of activity and the culture involved. In the Middle East the earliest depiction of an eruption is a wall painting dating from the Neolithic at Çatal Hüyük and the earliest record dates from the third millennium BCE. Knowledge of volcanoes increased over time. In some parts of the world knowledge of eruptions was passed down by oral transmission, but as far as written records were concerned, in the first century CE only 9 volcanoes in the Mediterranean region were recognised, together with Mount Cameroon in West Africa. In the next 1000 years the list grew by 17, some 14 of these volcanoes being in Japan. The first recorded eruptions in Indonesia occurred in 1000 and 1006, and volcanoes in newly settled Iceland increased the number to just 48 in 1380 CE. After this the list continued to increase, with important regions such as New Zealand and Hawaii only being added in the past 200 years. Only from 1900 did the rate of growth decline significantly (Simkin et al. 1981: 23; Simkin, 1993 Siebert et al. 2011; Simkin, 1993), but it is sobering to recall that in the twentieth century major eruptions have occurred from volcanoes that were considered inactive or extinct examples including: Mount Lamington - Papua New Guinea, 1951; Mount Arenal - Costa Rica, 1968 and Nyos - Cameroon, 1986. Although there are instances where the human impact of historical eruptions have been compiled - with examples including the 1883 eruption of Krakatau (Simkin and Fiske (1983) and 1943 -1952 eruption of Parícutin (Luhr and Simkin, 1993) - these are exceptions and there remains a significant gap in knowledge about both the short and long-term effects on societies of major eruptions which occurred before the 1980s. Following a broad review the chapter provides a discussion of the ways in which information has been collected, compiled and disseminated from the earliest times until the 1980s in two case study areas: the Azores Islands (Portugal) and southern Italy. In Italy information on eruptions stretches back to prehistoric times and has become progressively better known over more than 2,000 years of written history, yet even here there remain significant gaps in the record even for events that took place between 1900 and 1990. In contrast, located in the middle of the Atlantic, the Azores have been isolated for much of their history and illustrate the difficulties involved in using indigenous sources to compile, not only assessments of impact, but also at a more basic level a complete list of historical events with accurate dates
Volcanic Unrest and Pre-eruptive Processes: A Hazard and Risk Perspective
International audienc