498 research outputs found

    Asymmetric synthesis of γ-chloro-α,β-diamino- and β,γ-aziridino-α-aminoacylpyrrolidines and -piperidines via stereoselective Mannich-type additions of N-(diphenylmethylene)glycinamides across α-chloro-N-sulfinylimines

    Get PDF
    The asymmetric synthesis of new chiral gamma-chloro-alpha,beta-diaminocarboxylamide derivatives by highly diastereoselective Mannich-type reactions of N-(diphenylmethylene) glycinamides across chiral alpha-chloro-N-p-toluenesulfinylaldimines was developed. The resulting (S-S,2S,3S)-gamma-chloro-alpha,beta-diaminocarboxylamides were formed with the opposite enantiotopic face selectivity as compared to the (S-S,2R,3R)-gamma-chloro-alpha,beta-diaminocarboxyl esters obtained via Mannich-type addition of analogous N-(diphenylmethylene) glycine esters across a chiral alpha-chloro-N-p-toluenesulfinylaldimine. Selective deprotection under different acidic reaction conditions and ring closure of the gamma-chloro-alpha,beta-diaminocarboxylamides was optimized, which resulted in N-alpha-deprotected syn-gamma-chloro-alpha,beta-diaminocarboxylamides, N-sulfinyl-beta,gamma-aziridino-alpha-aminocarboxylamide derivatives, a trans-imidazolidine, and an N-alpha,N-beta-deprotected syn-gamma-chloro-alpha,beta-diaminocarboxylamide

    Increased thermal conductivity of thermoplastic composites by manipulation of filler orientation

    Get PDF

    Identification and Characterization of Approved Drugs and Drug-Like Compounds as Covalent Escherichia coli ClpP Inhibitors

    Get PDF
    The serine protease Caseinolytic protease subunit P (ClpP) plays an important role for protein homeostasis in bacteria and contributes to various developmental processes, as well as virulence. Therefore, ClpP is considered as a potential drug target in Gram-positive and Gram-negative bacteria. In this study, we utilized a biochemical assay to screen several small molecule libraries of approved and investigational drugs for Escherichia coli ClpP inhibitors. The approved drugs bortezomib, cefmetazole, cisplatin, as well as the investigational drug cDPCP, and the protease inhibitor 3,4-dichloroisocoumarin (3,4-DIC) emerged as ClpP inhibitors with IC50 values ranging between 0.04 and 31 µM. Compound profiling of the inhibitors revealed cefmetazole and cisplatin not to inhibit the serine protease bovine α-chymotrypsin, and for cefmetazole no cytotoxicity against three human cell lines was detected. Surface plasmon resonance studies demonstrated all novel ClpP inhibitors to bind covalently to ClpP. Investigation of the potential binding mode for cefmetazole using molecular docking suggested a dual covalent binding to Ser97 and Thr168. While only the antibiotic cefmetazole demonstrated an intrinsic antibacterial effect, cDPCP clearly delayed the bacterial growth recovery time upon chemically induced nitric oxide stress in a ClpP-dependent manner

    Identification and Characterization of Approved Drugs and Drug-Like Compounds as Covalent Escherichia coli ClpP Inhibitors

    Get PDF
    The serine protease Caseinolytic protease subunit P (ClpP) plays an important role for protein homeostasis in bacteria and contributes to various developmental processes, as well as virulence. Therefore, ClpP is considered as a potential drug target in Gram-positive and Gram-negative bacteria. In this study, we utilized a biochemical assay to screen several small molecule libraries of approved and investigational drugs for Escherichia coli ClpP inhibitors. The approved drugs bortezomib, cefmetazole, cisplatin, as well as the investigational drug cDPCP, and the protease inhibitor 3,4-dichloroisocoumarin (3,4-DIC) emerged as ClpP inhibitors with IC50 values ranging between 0.04 and 31 µM. Compound profiling of the inhibitors revealed cefmetazole and cisplatin not to inhibit the serine protease bovine α-chymotrypsin, and for cefmetazole no cytotoxicity against three human cell lines was detected. Surface plasmon resonance studies demonstrated all novel ClpP inhibitors to bind covalently to ClpP. Investigation of the potential binding mode for cefmetazole using molecular docking suggested a dual covalent binding to Ser97 and Thr168. While only the antibiotic cefmetazole demonstrated an intrinsic antibacterial effect, cDPCP clearly delayed the bacterial growth recovery time upon chemically induced nitric oxide stress in a ClpP-dependent manner

    The effect of pharmacological inhibition of Serine Proteases on neuronal networks in vitro

    Get PDF
    This work was supported by the European Union\u2019s Framework Programme for Research and Innovation (under the H2020 ETN grant n. 642881 to Stefanie Dedeurwaerdere, Pieter Van Der Veken, and Koen Augustyns; under the Specific Grant Agreement n. 785907 - Human Brain Project to Michele Giugliano; and under FP7 grants n. 286403 and n. 284801 to Michele Giugliano), the European Union\u2019s Research Area Networks (NEURON II to Stefanie Dedeurwaerdere), the Flemish Research Foundation (grants n. G0F1517N and n. K201619N to Michele Giugliano), the University of Antwerp (grant n. BOF-DOCPRO-2016 to Michele Giugliano), and the Scuola Internazionale Superiore di Studi Avanzati (\u2018\u2018Collaborazione di Eccellenza 2018\u2019\u2019 to Michele Giugliano). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Sustainable Desalinator - An EPS@ISEP 2016 Project

    Get PDF
    The European Project Semester (EPS) is a one semester capstone project/internship framework offered by the EPS providers to engineering, product design and business undergraduates. While a student-centred project-based learning offer, EPS proposes a unique multidisciplinary and multicultural teamwork set up to promote soft, technical and scientific competencies. In the spring of 2016, the EPS at the Instituto Superior de Engenharia do Porto (ISEP) welcomed a team of engineering students who chose to develop a sustainable water desalinator, the working principle relying on solar energy and natural temperature differences to convert saline water into fresh water. This paper describes the team's journey, including the motivation, the solution design process, considering the technical & scientific state of the art as well as the potential impact in terms of ethics, sustainability and marketing, and the development and testing of the prototype. The results obtained validate the purpose of the developed system since a significant reduction of the salt water conductivity, to values of the same order of magnitude of tap water, were observed. Although improvements can be made, the desalinator prototype produced 70 ml/d of distilled water in late spring and 7 ml/d in midwinter atmospheric conditions.info:eu-repo/semantics/publishedVersio

    Crystal structure of Porphyromonas gingivalis dipeptidyl peptidase 4 and structure-activity relationships based on inhibitor profiling

    Get PDF
    The Gram-negative anaerobe Porphyromonas gingivalis is associated with chronic periodontitis. Clinical isolates of P. gingivalis strains with high dipeptidyl peptidase 4 (DPP4) expression also had a high capacity for biofilm formation and were more infective. The X-ray crystal structure of P. gingivalis DPP4 was solved at 2.2 Å resolution. Despite a sequence identity of 32%, the overall structure of the dimer was conserved between P. gingivalis DPP4 and mammalian orthologues. The structures of the substrate binding sites were also conserved, except for the region called S2-extensive, which is exploited by specific human DPP4 inhibitors currently used as antidiabetic drugs. Screening of a collection of 450 compounds as inhibitors revealed a structure-activity relationship that mimics in part that of mammalian DPP9. The functional similarity between human and bacterial DPP4 was confirmed using 124 potential peptide substrates

    Selected strategies to fight pathogenic bacteria

    Get PDF
    Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.Peer reviewe
    corecore