3,944 research outputs found
Atmospheric Calorimetry above 10 eV: Shooting Lasers at the Pierre Auger Cosmic-Ray Observatory
The Pierre Auger Cosmic-Ray Observatory uses the earth's atmosphere as a
calorimeter to measure extensive air-showers created by particles of
astrophysical origin. Some of these particles carry joules of energy. At these
extreme energies, test beams are not available in the conventional sense. Yet
understanding the energy response of the observatory is important. For example,
the propagation distance of the highest energy cosmic-rays through the cosmic
microwave background radiation (CMBR) is predicted to be strong function of
energy. This paper will discuss recently reported results from the observatory
and the use of calibrated pulsed UV laser "test-beams" that simulate the
optical signatures of ultra-high energy cosmic rays. The status of the much
larger 200,000 km companion detector planned for the northern hemisphere
will also be outlined.Comment: 6 pages, 11 figures XIII International Conference on Calorimetry in
High Energy Physic
The Environments of Low and High Luminosity Radio Galaxies at Moderate Redshifts
In the local Universe, high-power radio galaxies live in lower density
environments than low-luminosity radio galaxies. If this trend continues to
higher redshifts, powerful radio galaxies would serve as efficient probes of
moderate redshift groups and poor clusters. Photometric studies of radio
galaxies at 0.3 < z < 0.5 suggest that the radio luminosity-environment
correlation disappears at moderate redshifts, though this could be the result
of foreground/background contamination affecting the photometric measures of
environment. We have obtained multi-object spectroscopy of in the fields of 14
lower luminosity (L_1.4GHz
1.2x10^25 W/Hz) radio galaxies at z ~ 0.3 to spectroscopically investigate the
link between the environment and the radio luminosity of radio galaxies at
moderate redshifts. Our results support the photometric analyses; there does
not appear to be a correlation between the luminosity of a radio galaxy and its
environment at moderate redshifts. Hence, radio galaxies are not efficient
signposts for group environments at moderate redshifts.Comment: 7 pages, 9 figures, Accepted for publication in A
Radio-mode feedback in local AGNs: dependence on the central black hole parameters
Radio mode feedback, in which most of the energy of an active galactic
nucleus (AGN) is released in a kinetic form via radio-emitting jets, is thought
to play an important role in the maintenance of massive galaxies in the
present-day Universe. We study the link between radio emission and the
properties of the central black hole in a large sample of local radio galaxies
drawn from the Sloan Digital Sky Survey (SDSS), based on the catalogue of Best
and Heckman (2012). Our sample is mainly dominated by massive black holes
(mostly in the range ) accreting at very low Eddington
ratios (typically ). In broad agreement with previously
reported trends, we find that radio galaxies are preferentially associated with
the more massive black holes, and that the radio loudness parameter seems to
increase with decreasing Eddington ratio. We compare our results with previous
studies in the literature, noting potential biases. The majority of the local
radio galaxies in our sample are currently in a radiatively inefficient
accretion regime, where kinetic feedback dominates over radiative feedback. We
discuss possible physical interpretations of the observed trends in the context
of a two-stage feedback process involving a transition in the underlying
accretion modes.Comment: accepted for publication in Monthly Notices of the Royal Astronomical
Societ
Recommendation Subgraphs for Web Discovery
Recommendations are central to the utility of many websites including
YouTube, Quora as well as popular e-commerce stores. Such sites typically
contain a set of recommendations on every product page that enables visitors to
easily navigate the website. Choosing an appropriate set of recommendations at
each page is one of the key features of backend engines that have been deployed
at several e-commerce sites.
Specifically at BloomReach, an engine consisting of several independent
components analyzes and optimizes its clients' websites. This paper focuses on
the structure optimizer component which improves the website navigation
experience that enables the discovery of novel content.
We begin by formalizing the concept of recommendations used for discovery. We
formulate this as a natural graph optimization problem which in its simplest
case, reduces to a bipartite matching problem. In practice, solving these
matching problems requires superlinear time and is not scalable. Also,
implementing simple algorithms is critical in practice because they are
significantly easier to maintain in production. This motivated us to analyze
three methods for solving the problem in increasing order of sophistication: a
sampling algorithm, a greedy algorithm and a more involved partitioning based
algorithm.
We first theoretically analyze the performance of these three methods on
random graph models characterizing when each method will yield a solution of
sufficient quality and the parameter ranges when more sophistication is needed.
We complement this by providing an empirical analysis of these algorithms on
simulated and real-world production data. Our results confirm that it is not
always necessary to implement complicated algorithms in the real-world and that
very good practical results can be obtained by using heuristics that are backed
by the confidence of concrete theoretical guarantees
Lens Galaxy Properties of SBS1520+530: Insights from Keck Spectroscopy and AO Imaging
We report on an investigation of the SBS 1520+530 gravitational lens system
and its environment using archival HST imaging, Keck spectroscopic data, and
Keck adaptive-optics imaging. The AO imaging has allowed us to fix the lens
galaxy properties with a high degree of precision when performing the lens
modeling, and the data indicate that the lens has an elliptical morphology and
perhaps a disk. The new spectroscopic data suggest that previous determinations
of the lens redshift may be incorrect, and we report an updated, though
inconclusive, value z_lens = 0.761. We have also spectroscopically confirmed
the existence of several galaxy groups at approximately the redshift of the
lens system. We create new models of the lens system that explicitly account
for the environment of the lens, and we also include improved constraints on
the lensing galaxy from our adaptive-optics imaging. Lens models created with
these new data can be well-fit with a steeper than isothermal mass slope (alpha
= 2.29, with the density proportional to r^-alpha) if H_0 is fixed at 72
km/s/Mpc; isothermal models require H_0 ~ 50 km/s/Mpc. The steepened profile
may indicate that the lens is in a transient perturbed state caused by
interactions with a nearby galaxy.Comment: 12 pages, 10 figures, submitted to Ap
Global Production Increased by Spatial Heterogeneity in a Population Dynamics Model
Spatial and temporal heterogeneity are often described as important factors having a strong impact on biodiversity. The effect of heterogeneity is in most cases analyzed by the response of biotic interactions such as competition of predation. It may also modify intrinsic population properties such as growth rate. Most of the studies are theoretic since it is often difficult to manipulate spatial heterogeneity in practice. Despite the large number of studies dealing with this topics, it is still difficult to understand how the heterogeneity affects populations dynamics. On the basis of a very simple model, this paper aims to explicitly provide a simple mechanism which can explain why spatial heterogeneity may be a favorable factor for production.We consider a two patch model and a logistic growth is assumed on each patch. A general condition on the migration rates and the local subpopulation growth rates is provided under which the total carrying capacity is higher than the sum of the local carrying capacities, which is not intuitive. As we illustrate, this result is robust under stochastic perturbations
Results of a self-triggered prototype system for radio-detection of extensive air showers at the Pierre Auger Observatory
We describe the experimental setup and the results of RAuger, a small
radio-antenna array, consisting of three fully autonomous and self-triggered
radio-detection stations, installed close to the center of the Surface Detector
(SD) of the Pierre Auger Observatory in Argentina. The setup has been designed
for the detection of the electric field strength of air showers initiated by
ultra-high energy cosmic rays, without using an auxiliary trigger from another
detection system. Installed in December 2006, RAuger was terminated in May 2010
after 65 registered coincidences with the SD. The sky map in local angular
coordinates (i.e., zenith and azimuth angles) of these events reveals a strong
azimuthal asymmetry which is in agreement with a mechanism dominated by a
geomagnetic emission process. The correlation between the electric field and
the energy of the primary cosmic ray is presented for the first time, in an
energy range covering two orders of magnitude between 0.1 EeV and 10 EeV. It is
demonstrated that this setup is relatively more sensitive to inclined showers,
with respect to the SD. In addition to these results, which underline the
potential of the radio-detection technique, important information about the
general behavior of self-triggering radio-detection systems has been obtained.
In particular, we will discuss radio self-triggering under varying local
electric-field conditions.Comment: accepted for publication in JINS
Light Nuclei solving Auger puzzles. The Cen-A imprint
Ultra High Energy Cosmic Rays (UHECR) map at 60 EeV have been found recently
by AUGER group spreading anisotropy signatures in the sky. The result have been
interpreted as a manifestation of AGN sources ejecting protons at GZK edges
mostly from Super-galactic Plane. The result is surprising due to the absence
of much nearer Virgo cluster. Moreover, early GZK cut off in the spectra may be
better reconcile with light nuclei (than with protons). In addition a large
group (nearly a dozen) of events cluster suspiciously along Cen-A. Finally,
proton UHECR composition nature is in sharp disagreement with earlier AUGER
claim of a heavy nuclei dominance at 40 EeV. Therefore we interpret here the
signals as mostly UHECR light nuclei (He, Be, B, C, O), very possibly mostly
the lightest (He,Be) ones, ejected from nearest AGN Cen-A, UHECR smeared by
galactic magnetic fields, whose random vertical bending is overlapping with
super-galactic arm. The eventual AUGER misunderstanding took place because of
such a rare coincidence between the Super Galactic Plane (arm) and the smeared
(randomized) signals from Cen-A, bent orthogonally to the Galactic fields. Our
derivation verify the consistence of the random smearing angles for He, Be and
B, C, O, in reasonable agreement with the AUGER main group events around Cen-A.
Only few other rare events are spread elsewhere. The most collimated from Cen-A
are the lightest. The most spread the heavier. Consequently Cen-A is the best
candidate UHE neutrino tau observable by HEAT and AMIGA as enhanced AUGER array
at tens-hundred PeV energy. This model maybe soon tested by new events
clustering around the Cen-A and by composition imprint study.Comment: 4 pages, 5 figures
First steps towards a target laboratory at GANIL
The development of large-isotopically enriched 208Pb and 209Bi targets and the production of thin carbon films are described. Their use on rotating wheels in heavy-ion fusion reactions with intense 58Fe, 76Ge and 48Ca beams is reported
The SWELLS Survey. I. A large spectroscopically selected sample of edge-on late-type lens galaxies
The relative contribution of baryons and dark matter to the inner regions of
spiral galaxies provides critical clues to their formation and evolution, but
it is generally difficult to determine. For spiral galaxies that are strong
gravitational lenses, however, the combination of lensing and kinematic
observations can be used to break the disk-halo degeneracy. In turn, such data
constrain fundamental parameters such as i) the mass density profile slope and
axis ratio of the dark matter halo, and by comparison with dark matter-only
numerical simulations the modifications imposed by baryons; ii) the mass in
stars and therefore the overall star formation efficiency, and the amount of
feedback; iii) by comparison with stellar population synthesis models, the
normalization of the stellar initial mass function. In this first paper of a
series, we present a sample of 16 secure, 1 probable, and 6 possible strong
lensing spiral galaxies, for which multi-band high-resolution images and
rotation curves were obtained using the Hubble Space Telescope and Keck-II
Telescope as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS). The
sample includes 8 newly discovered secure systems. [abridged] We find that the
SWELLS sample of secure lenses spans a broad range of morphologies (from
lenticular to late-type spiral), spectral types (quantified by Halpha
emission), and bulge to total stellar mass ratio (0.22-0.85), while being
limited to M_*>10^{10.5} M_sun. The SWELLS sample is thus well-suited for
exploring the relationship between dark and luminous matter in a broad range of
galaxies. We find that the deflector galaxies obey the same size-mass relation
as that of a comparison sample of elongated non-lens galaxies selected from the
SDSS survey. We conclude that the SWELLS sample is consistent with being
representative of the overall population of high-mass high-inclination disky
galaxies.Comment: 21 pages, 6 figures, MNRAS, in pres
- âŠ