98 research outputs found

    Adsorption of fullerene and azafullerene on Cu(111) studied by electron energy loss spectroscopy

    Get PDF
    Fullerene and azafullerene films were studied by electron energy loss spectroscopy in reflection geometry. Compared to C60, (C59N)2 multilayers show additional vibrational modes that are characteristic of the dimer structure. The (C59N)2 is semiconductor-like and giant optically allowed excitonic transitions are found in the gap in drastic contrast with C60. The azafullerene monolayer on Cu(111) no longer shows the presence of dimers, indicating monomer adsorption. Similarly to C60, azafullerene molecules in contact with the metal substrate receive a transferred charge between two and three electrons. However, the C59N appears more covalently bound to Cu because it decomposes when heated above 660 K while C60 only desorbs.

    Relativistic Calculation of two-Electron one-Photon and Hypersatellite Transition Energies for 12≀Z≀3012\leq Z\leq30 Elements

    Full text link
    Energies of two-electron one-photon transitions from initial double K-hole states were computed using the Dirac-Fock model. The transition energies of competing processes, the Kα\alpha hypersatellites, were also computed. The results are compared to experiment and to other theoretical calculations.Comment: accepted versio

    Identification of staphyloxanthin and derivates in yellow-pigmented Staphylococcus capitis subsp. capitis

    Get PDF
    Introduction: Staphylococcus capitis naturally colonizes the human skin but as an opportunistic pathogen, it can also cause biofilm-associated infections and bloodstream infections in newborns. Previously, we found that two strains from the subspecies S. capitis subsp. capitis produce yellow carotenoids despite the initial species description, reporting this subspecies as non-pigmented. In Staphylococcus aureus, the golden pigment staphyloxanthin is an important virulence factor, protecting cells against reactive oxygen species and modulating membrane fluidity. Methods: In this study, we used two pigmented (DSM 111179 and DSM 113836) and two non-pigmented S. capitis subsp. capitis strains (DSM 20326T and DSM 31028) to identify the pigment, determine conditions under which pigmentproduction occurs and investigate whether pigmented strains show increased resistance to ROS and temperature stress. Results: We found that the non-pigmented strains remained colorless regardless of the type of medium, whereas intensity of pigmentation in the two pigmented strains increased under low nutrient conditions and with longer incubation times. We were able to detect and identify staphyloxanthin and its derivates in the two pigmented strains but found that methanol cell extracts from all four strains showed ROS scavenging activity regardless of staphyloxanthin production. Increased survival to cold temperatures (−20°C) was detected in the two pigmented strains only after long-term storage compared to the non-pigmented strains. Conclusion: The identification of staphyloxanthin in S. capitis is of clinical relevance and could be used, in the same way as in S. aureus, as a possible target for anti-virulence drug design

    A New Method for Determining the Composition of Core–Shell Nanoparticles via Dual-EDX+EELS Spectrum Imaging

    Get PDF
    Simultaneously acquired microanalytical X-ray and electron energy loss signals are obtained from a bimetallic core–shell nanoparticle system (FePt@Fe3_3O4_4). The signals are decomposed using independent component analysis and the extracted components are used to separately quantify the composition of the spatially overlapping core and shell phases in the nano-heterostructure. The utilization of the complementary strengths of energy dispersive X-ray and electron energy-loss spectroscopy microanalysis has enabled the quantification of both light and heavy elements in a single spectrum image acquisition.D.R. acknowledges support from the Royal Society’s Newton International Fellowship scheme. P.A.M acknowledges financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP7/ 2007-2013)/ERC grant agreement 291522-3DIMAGE. P.A.M. also acknowledges financial support from the European Union’s Seventh Framework Programme of the European Commission: ESTEEM2, contract number 312483. B.R.K. thanks the UK EPSRC for financial support (EP/J500380/1).This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/ppsc.20160009

    Reactivity of cyano- and isothiocyanatoborylenes: metal coordination, one-electron oxidation and boron-centred BrĂžnsted basicity

    Get PDF
    Doubly base-stabilised cyano- and isothiocyanatoborylenes of the form LLâ€ČBY (L = CAAC = cyclic alkyl(amino)carbene; Lâ€Č = NHC = N-heterocyclic carbene; Y = CN, NCS) coordinate to group 6 carbonyl complexes via the terminal donor of the pseudohalide substituent and undergo facile and fully reversible one-electron oxidation to the corresponding boryl radical cations [LLâ€ČBY]˙+. Furthermore, calculations show that the borylenes have very similar proton affinities, both to each other and to NHC superbases. However, while the protonation of LLâ€ČB(CN) with PhSH yielding [LLâ€ČBH(CN)+][PhS−] is fully reversible, that of LLâ€ČB(NCS) is rendered irreversible by a subsequent B-to-CCAAC hydrogen shift and nucleophilic attack of PhS− at boron

    Lackhaftung und OberflĂ€chenstabilitĂ€t bei thermoplastischen Olefinen und EinflĂŒsse von Prozessen und PrĂŒfverfahren

    Get PDF
    Der Druckwasserstrahltest DST (DIN EN ISO 16925) ist eine etablierte Methode zur QualitĂ€tssicherung lackierter OberflĂ€chen im Automobilbereich. Dabei trifft ein heißer Hochdruck-Wasserstrahl auf die angeritzte OberflĂ€che, woraufhin das Ausmaß der Lackablösung bewertet wird. Seine Vergleichbarkeit wird jedoch durch zahlreiche EinflĂŒsse erschwert, was Insbesondere auf lackierte, Talkum-gefĂŒllte thermoplastische Olefine (TPO) zutrifft. Die unsystematischen AusfĂ€lle mit Substratbeteiligung am Versagensbild (Substratausrisse) fĂŒhren zu Schwierigkeiten bei Freigabeprozessen und der Prozessoptimierung. Ein verbesserter Beprobungsplan und Untersuchungen zum Spritzgussprozess (oft diskutierte Ausfallursache) belegten zunĂ€chst lediglich die hohe Streuung der DST-Ergebnisse. Die Validierung des DST an unterschiedlichen HaftungsqualitĂ€ten ergab, dass die beobachtete Streuung vom DST selbst herrĂŒhrt. WĂ€hrend der PrĂŒfung treten unvorhersehbare Effekte an der angeritzten Stelle auf, die auf den komplexen Substrat-Lack-Verbund zurĂŒckzufĂŒhren sind, der sich außerhalb des thermodynamischen Gleichgewichts befindet. Daneben wurde ein selten angewandter Haftungstest, der Peeltest, im Hinblick auf den Einsatz in vollautomatischen Lackierstraßen, eingefĂŒhrt und optimiert. Dieser nutzt ein in die Lackschicht eingebettetes Gewebe, das „peelend“ abgezogen wird. Der Peeltest ergab, dass die Ursache der Lackablösung ausschließlich im Substrat (bis 0,02 mm Tiefe) lokalisiert ist, da die AdhĂ€sionskraft die kohĂ€sive Festigkeit des Substrats ĂŒbertrifft. TalkumplĂ€ttchen (Bestandteil des Substrats) tragen durch ihre Anordnung parallel zur OberflĂ€che entscheidend zum kohĂ€siven Versagensmechanismus bei, was mechanische Bulk-PrĂŒfungen wie Zugversuch oder Kerbschlagbiegeversuch nicht vorhersagen konnten. Untersuchungen bezĂŒglich Aktivierungsmethoden und OberflĂ€chenparametern zeigten, dass die Beflammung (Oxidation) von TPO nicht homogen verlĂ€uft und dafĂŒr hauptsĂ€chlich Effekte im Flammenprofil des Brenners verantwortlich sind. Dies verlangsamt Prozesse, da das betrachtete Substrat ganzflĂ€chig bis ĂŒber einen Sauerstoffschwellenwert von 5,7 Atom% auf der OberflĂ€che zu aktivieren ist. Die erzielten Resultate in Bezug auf Charakteristika des DST auf lackiertem TPO und die schwĂ€chenden Effekte bestimmter Substratkomponenten und inhomogener Aktivierung fĂŒhren zu einer Sensibilisierung im Bereich QualitĂ€tssicherung lackierter Kunststoff

    Synthesis and Reactivity of Low-valent Boron(I) Compounds

    No full text
    Kapitel 1 Darstellung und ReaktivitĂ€t des Cyanoborylens (3) Im Rahmen dieser Arbeit ist es gelungen, in einer dreistufigen Synthese das erste basenstabilisierte Cyanoborylen [(cAAC)B(CN)]4 (3) in hohen Ausbeuten darzustellen (Schema 64). Hervorzuheben ist hierbei, dass dieser Ansatz keine „klassische“ Metallborylen- Vorstufe benötigt, weshalb wenig Synthesestufen und bessere Ausbeuten erreicht werden konnten. Schema 64. Darstellung von [(cAAC)B(CN)]4 (3). Eine erste Besonderheit von [(cAAC)B(CN)]4 (3) ist, dass dieses das einzige bislang bekannte Borylen darstellt, welches eine Stabilisierung durch Oligomerisierung erfĂ€hrt und somit in Folgereaktionen nicht erst in situ generiert werden muss. Die elektronische Untersuchung von 3 durch Cyclovoltammetrie hat zudem gezeigt, dass 3 ein Redoxpotential von E1/2 = −0.83 V besitzt und somit eine chemische Oxidation zu neuen Verbindungen fĂŒhren könnte, was durch Umsetzung mit AgCN demonstriert wurde (Schema 65). Hierdurch konnte [(cAAC)B(CN)3] (4) erfolgreich dargestellt und vollstĂ€ndig charakterisiert werden. [(cAAC)B(CN)3] (4) ist erst das zweite strukturell untersuchte basenstabilisierte Tricyanoboran. Zudem wurde die ReaktivitĂ€t von [(cAAC)B(CN)]4 (3) gegenĂŒber verschiedenen Lewis-Basen untersucht. Ziel hierbei war es, das oligomere Strukturmotiv aufzubrechen und gemischte zweifach basenstabilisierte Borylene zu realisieren. Hierbei konnte eine deutliche AbhĂ€ngigkeit von der BasenstĂ€rke und dem sterischen Anspruch der Lewis-Base aufgedeckt werden. So hat sich gezeigt, dass Lewis-Basen wie THF, MeCN, Pyridin und PEt3 zu schwach sind, um die oligomere Struktur aufzubrechen. Im Gegensatz dazu fĂŒhrten die Umsetzungen von [(cAAC)B(CN)]4 (3) mit den starken Lewis-Basen cAAC bzw. IPr zu keinerlei Umsatz, was vermutlich auf einen zu großen sterischen Anspruch zurĂŒckzufĂŒhren ist. Dementsprechend verlief die Umsetzung von [(cAAC)B(CN)]4 (3) mit der starken und sterisch nicht anspruchsvollen Base IMeMe erfolgreich und lieferte [(cAAC)B(CN)(IMeMe)] (5) in guten Ausbeuten (Schema 65). Schema 65. Umsetzung von [(cAAC)B(CN)]4 (3) mit AgCN und IMeMe. WĂ€hrend [(cAAC)B(CN)(PEt3)] (6) nicht durch Umsetzung von [(cAAC)B(CN)]4 (3) mit PEt3 zugĂ€nglich ist, konnte dieses jedoch auch durch Reduktion von [(cAAC)BBr2(CN)] (2) in Gegenwart von PEt3 erhalten werden (Schema 66). [(cAAC)B(CN)(PEt3)] (6) stellt hierbei das das bislang erste bekannte Phosphan-stabilisierte Borylen dar. Schema 66. Kristallstruktur und Synthese von [(cAAC)B(CN)(PEt3)] 6. Kapitel 2 ReaktivitĂ€t von 3 gegenĂŒber Chalcogenen und Chalcogeniden In weiterfĂŒhrenden Studien wurde zudem die ReaktivitĂ€t von 3 gegenĂŒber Chalcogenen und Chalcogeniden im Detail untersucht. Durch Verwendung der entsprechenden Stöchiometrie konnte 3 hierbei selektiv zu den Bor-Chalcogen-Heterocyclen 9, 10, 13-15 umgesetzt werden (Schema 67). Schema 67. Darstellung von 9, 10, 13-15. Diese Ergebnisse wurden anschließend mit der ReaktivitĂ€t des Konstitutionsisomers LII verglichen. In diesem Zusammenhang konnten 11 und 12 durch stöchiometrische ReaktionsfĂŒhrung dargestellt werden (Schema 68), welche nachfolgend in die bereits erwĂ€hnten Verbindungen 9 und 10 ĂŒberfĂŒhrt werden konnten (Schema 69). Schema 68. Darstellung von 11 und 12. Schema 69. Darstellung von 9 und 10 aus 11 bzw. 12. Des Weiteren konnte 3 erfolgreich mit Ph2Se2, Me2Se2 und Ph2S2 zu 16-18 umgesetzt werden (Schema 70), wobei 16 und 18 auch durch Umsetzung von LII mit Ph2Se2 bzw. Ph2S2 zugĂ€nglich sind (Schema 70). Schema 70. Synthese von 16-18. Das tetramere Borylen 3 und das Diboren LII zeigen Ă€hnliche ReaktivitĂ€ten gegenĂŒber elementaren Chalcogenen sowie Dichalcogeniden. Lediglich die Darstellung der dreigliedrigen B2E-Heterocyclen 11 und 12 gelingt selektiv nur ausgehend von LII. Kapitel 3 Darstellung und ReaktivitĂ€t des Borylanions (19) Ein weiterer Aspekt dieser Arbeit beschĂ€ftigte sich mit der Synthese und ReaktivitĂ€t des Borylanions 19, eines der wenigen bekannten nukleophilen Borspezies. Der Zugang zu 19 durch Deprotonierung von 1 (Schema 71) ist hierbei besonders bemerkenswert, da es eine bis dato kaum bekannte bzw. verwendete Methode ist, da borgebundene Wasserstoffatome in der Regel hydridischer Natur sind, weshalb eine Deprotonierung normalerweise nicht möglich ist und nur fĂŒr zwei weitere Systeme beschrieben ist. Hierzu zĂ€hlen die Synthese des Dianions XLVII[6a, 6b] und die Synthese des Borylanions XLVIII[45]. Eine Gemeinsamkeit dieser drei Spezies ist die Gegenwart elektronenziehender Cyanidsubstituenten welche eine Umpolung der B‒H-Bindung bedingen, wodurch eine Deprotonierung erst ermöglicht wird. Schema 71. Synthese von 19. Um diesen Sachverhalt genauer zu untersuchen, wurden Rechnungen durchgefĂŒhrt und die partiellen Ladungen (NBO) des borgebunden Wasserstoff an BH3, [(cAAC)BH3] und 1 auf dem BP86/def2-SVP-Niveau berechnet (Abbildung 53). Abbildung 53. Teilladungen (NBO) von BH3, [(cAAC)BH3] und 1 (BP86/def2-SVP). Durch Austausch eines der Hydride in [(cAAC)BH3] durch eine Cyanogruppe werden die borgebunden Wasserstoffe in 1 deutlich protischer (+0.038, +0.080), wobei schon durch Koordination des cAAC-Liganden an BH3 zwei der vorher hydridischen Wasserstoffe (BH3: partielle Ladung: –0.101) erheblich positiver geladen wird (+0.050). Der nukleophile Charakter von 19 wurde anschließend durch ReaktivitĂ€tsstudien untersucht. So fĂŒhrte die Umsetzung von 19 mit [(PPh3)AuCl] zur Bildung von [(cAAC)BH(CN)(AuPPh3)] (20) (Schema 72). WĂ€hrend die Umsetzung von 19 mit Tritylderivaten keine isolierbare Verbindung lieferte, konnte durch Umsetzung mit den schweren, weichen Homologen R3ECl (R = Ph, E = Ge, Sn und Pb; R = Me, E = Sn) eine ganze Reihe von Boranen dargestellt werden (Schema 72). Schema 72. Synthese von 20-24. Die Umsetzung der entsprechenden Silylderivate R3SiCl war hingegen mit einem anderen Reaktionsverlauf verbunden (Schema 73). Schema 73. Synthese von 25-28. Demnach erfolgt die Reaktion von 19, im Gegensatz zu den höheren Homologen, mit den Silylderivaten nicht am weichen, nukleophilen Borzentrum sondern am hĂ€rteren Cyanostickstoffatom. Demzufolge wurden hierbei zunĂ€chst die Silylisonitrilverbindungen 25 und 26 gebildet, wobei 25 labil ist und innerhalb kĂŒrzester Zeit in 27 ĂŒbergeht. Im Gegensatz dazu konnte 28 nur durch Bestrahlung von 26 dargestellt werden. Die BindungsverhĂ€ltnisse in 26 wurden zudem auch durch DFT-Rechnungen auf dem BP86/def2-SVP-Niveau untersucht. Die Analyse der Kohn–Sham MOs offenbarte hierbei ein HOMO mit π-Bindungscharakter ĂŒber die gesamte CcAAC‒B‒CCN-Einheit mit angrenzendem π-Antibindungscharakter ĂŒber die C‒NEinheiten beider Donorliganden (Abbildung 54). Abbildung 54. Gemessene (links) und berechnete (mitte) Struktur und HOMO (rechts) von 26. WĂ€hrend die Umsetzung von 26 mit Cu(I)Cl dessen hohes Reduktionsvermögen verdeutlichte, fĂŒhrte die Umsetzung mit Lithium in THF zur Bildung des Borylanions 19 und LiSiPh3. Die Reaktion von 26 mit BH3∙SMe2 lieferte hingegen quantitativ [(cAAC)BH3] (29), wĂ€hrend bei Umsetzung mit Ph3SnCl quantitativ 22 gebildet wurde (Schema 74). Dieses sehr unterschiedliche Reaktionsverhalten rechtfertigt eine Beschreibung von 26 sowohl als ein Silylisonitrilborylen, als auch eine zwitterionische Silyliumboryl-Spezies. Schema 74. Ambiphile ReaktivitĂ€t von 26 als neutrales Silylisonitrilborylen (A) oder als zwitterionische Silyliumboryl-Spezies (B). Kapitel 4 Darstellung und ReaktivitĂ€t von [(cAAC)BH3] (29) Da 1 selektiv deprotoniert werden kann und [(cAAC)BH3] (29) Rechnungen zufolge ebenfalls borgebundene Wasserstoffe mit protischem Charakter besitzt, wurde versucht, diese ReaktivitĂ€t auf 29 zu ĂŒbertragen. Demzufolge wurde im Rahmen dieser Arbeit [(cAAC)BH3] (29) dargestellt und dessen ReaktivitĂ€t gegenĂŒber anionischen (Schema 75) und neutralen (Schema 76) Nukleophilen untersucht. Es hat sich jedoch gezeigt, dass die Umsetzung von [(cAAC)BH3] (29) mit Lithiumorganylen nicht zur Deprotonierung fĂŒhrt, sondern zur Bildung der Lithiumborate 30, 32 und 34, unabhĂ€ngig von der Hybridisierung des Lithiumorganyls (sp3: LiNp, sp2: LiMes, sp: LiCCPh). Der Reaktionsmechanismus wurde durch DFT-Rechnungen untersucht (Abbildung 47). Diese zeigen eindeutig, das [(cAAC)BH3] (29) in einem Gleichgewicht mit dem entsprechenden Boran [(cAAC‒H)BH2] steht. Bei der stark exergonischen nukleophilen Addition der entsprechenden Basen wird [(cAAC‒H)BH2] aus dem Gleichgewicht entfernt (30: −29.6 kcal∙mol‒1; 32: ‒12.4 kcal∙mol‒1) und die Lithiumborate 30 und 32 gebildet. Diese Lithiumborate gehen dann durch Reaktion mit Me3SiCl in die entsprechenden cAACBoranaddukten 31, 33 und 35 ĂŒber (Schema 75). Schema 75. Synthese von 30-35. Diese zweistufige Synthese ist deshalb bemerkenswert, da dies einer ungewöhnlichen Substitution an einem sp3-Boran gleichkommt. Des Weiteren wurde die ReaktivitĂ€t von [(cAAC)BH3] (29) gegenĂŒber neutralen Lewis-Basen untersucht. So konnte bei der Umsetzung mit cAAC Verbindung 36 und bei der Umsetzung mit Pyridin Verbindung 37 erhalten werden (Schema 76). Schema 76. Synthese von 36 und 37. Der Mechanismus der Bildung von 36 und 37 wurde ebenfalls durch DFT-Rechnungen untersucht, welche auf eine reversible Reaktion des Pyridin-Addukts 37 hindeutet. Dies konnte auch experimentell bestĂ€tigt werden. Im Gegensatz dazu ist die Bildung von 36 irreversibel. Kapitel 5 Darstellung und Vergleich neuer Diborene Im Rahmen dieser Arbeit ist es zudem gelungen, eine Reihe an NHC-Boranaddukten (42-50) darzustellen und diese zum Großteil in die entsprechenden Diborene (51-58) zu ĂŒberfĂŒhren (Schema 77). Schema 77. Synthese der NHC-Boranaddukte 42-50 sowie deren Umsetzung zu den Diborenen 51-58. Die meisten Verbindungen konnten hierbei vollstĂ€ndig charakterisiert und somit die NMR-spektroskopischen und strukturellen Daten miteinander verglichen werden. Die 11B-NMRSignale von 51-58 wurden in einem engen Bereich (20.2 bis 22.5 ppm) beobachtet, welcher sich mit dem von X und XI (21.3 und 22.4 ppm)[17] deckt. Im Festkörper weisen die Diborene einen B‒B-Abstand zwischen 1.576(4) Å (51) und 1.603(4) Å (54) auf, ohne dass ein Trend erkennbar ist. Dieser Bereich ist zudem nahezu identisch mit bereits bekannten IMe-stabilisierten 1,2-Diaryldiborenen (1.585(4) bis 1.593(5) Å).[16-17] Einige dieser Diborene sind durch die entsprechende Wahl des Substitutionsmusters sehr labil und konnten deshalb nicht isoliert werden. Es ist dennoch gelungen UV-vis-spektroskopische Daten von 51, 52, 57 und 58 zu erhalten (Abbildung 55). Abbildung 55. UV-vis-Absorptionsspektren von 51, 52, 57 und 58. Die genaue Analyse der UV-vis-Spektren von 51, 52, 57 und 58 offenbart eine gewisse AbhĂ€ngigkeit der Maxima vom Substitutionsmuster. Der Vergleich der Diborene 51-58 hat gezeigt, dass das Substitutionsmuster einen entscheidenden Einfluss auf die Lage der Grenzorbitale hat, was die Eigenschaften der Diborene deutlich verĂ€ndert. So fĂŒhrte die EinfĂŒhrung einer Diphenylaminogruppe am Thienylrest zur Aufhebung der KoplanaritĂ€t der Th‒B=B‒Th-Ebene, weshalb die entsprechenden Spezies durch die fehlende π-Konjugation sehr labil sind. Diese Beeinflussung der KoplanaritĂ€t konnte bereits in kleinem Ausmaß bei der Substitution durch eine Me3Si-Gruppe beobachtet werden. Auch der Einfluss unterschiedlicher NHCs wurde untersucht. WĂ€hrend die EinfĂŒhrung von IMeMe kaum einen Einfluss auf die Absorptionsmaxima zeigt, fĂŒhrt die Verwendung von IPr zu einer deutlichen Verschiebung. Als das stabilste Diboren erwies sich im Rahmen dieser Untersuchung das [(IMe)BTh)]2 (X).Chapter 1 Synthesis and reactivity of cyanoborylene 3 In the context of this work, a successful high-yielding three-step synthesis of the first basestabilised cyanoborylene [(cAAC)B(CN)]4 (3) was developed (Scheme 1). It should be emphasized that this approach does not involve a „classical“ metal borylene precursor, which is why fewer synthetic steps and better yields could be achieved. Scheme 1. Synthesis of the tetrameric borylene [(cAAC)B(CN)]4 (3). The first notable feature of borylene 3 is its unique self-stabilising nature via oligomerization, which means that it does not have to be generated in situ. The electronic properties of 3 were investigated by cyclic voltammetry, showing an oxidation wave at E1/2 = −0.83 V, implying that chemical oxidation could lead to new compounds. This was demonstrated by the reaction with AgCN (Scheme 2) which yielded [(cAAC)B(CN)3] (4). Compound 4 is only the second structurally characterized base-stabilized tricyanoborane. Additionally, the reactivity of 3 with different Lewis bases was investigated. The aim was to break up the tetrameric structural motif and obtain mixed base-stabilized borylenes. This study demonstrated dependence on the strength and steric demands of the Lewis base. Weak Lewis bases such as THF, MeCN, pyridine and PEt3 proved too weak to break up the tetrameric structure. Similarly, the reaction of 3 with strong Lewis bases such as cAAC or IPr remained unsuccessful, probably due to a too large steric hindrance. In contrast, the reaction of 3 with the strong and sterically non-demanding base IMeMe successfully yielded the mixed base borylene [(cAAC)B(CN)(IMeMe)] (5) in high yields (Scheme 2). Scheme 2. Reactions of [(cAAC)B(CN)]4 (3) with AgCN and IMeMe. While [(cAAC)B(CN)(PEt3)] (6) could not obtained by reaction of 3 with PEt3, this could be achieved by reducing [(cAAC)BBr2(CN)] (2) in the presence of excess PEt3 (Scheme 3). [(cAAC)B(CN)(PEt3)] (6) represents the first known phosphine-stabilized borylene. Scheme 3. Synthesis of [(cAAC)B(CN)(PEt3)] 6. Chapter 2 Reactivity of 3 toward chalcogens and chalcogenides In further studies, the reactivity of 3 towards elemental chalcogens was investigated in detail. By using the appropriate stoichiometry, 3 could be selectively converted to the four-, five- or six-membered diborachalcogen heterocycles 9, 10, 13-15 (Scheme 4). Scheme 4. Synthesis of 9, 10, 13-15 from 3. These results were then compared with the reactivity of the constitutional isomer of 3, diborene LII towards elemental chalcogens. In this context, the 3-membered B2E heterocycles 11 and 12 could be prepared by stoichiometric reaction (Scheme 5). These could subsequently be converted into the four-membered B2E2 heterocycles 9 and 10 already mentioned (Scheme 6). Scheme 5. Synthesis of 11 und 12 from diborene LII. Scheme 6. Synthesis of 9 and 10 by ring-expansion of 11 or 12. Furthermore, borylene 3 was successfully converted to the boron dichalcogenides 16-18 with Ph2Se2, Me2Se2, and Ph2S2 (Scheme 7). 16 and 18 were also accessible by reaction of diborene LII with Ph2Se2 and Ph2S2, respectively (Scheme 7). Scheme 7. Synthesis of dichalcogenides 16-18 from borylene 3 and diborene LII. The tetrameric borylene 3 and the diborene LII show similar reactivities towards elemental chalcogens and dichalcogenides. Only the synthesis of the 3-membered B2E heterocycles 11 and 12 succeeds exclusively from LII. Chapter 3 Synthesis and reactivity of the boryl anion (19) Another aspect of this work was the synthesis and reactivity of the (cyano)hydroboryl anion 19, a rare example of a nucleophilic boron species. The access to 19 by deprotonation of the (dihydro)cyanoborane 1 (Scheme 8) is particularly noteworthy, since boron-bonded hydrogen atoms are usually hydridic in nature and not amenable to deprotonation. Only two other systems allowing the deprotonation of a borane have been described. The tricyano-boryl dianion XLVII[6a, 6b] and the synthesis of the dicyanoboryl anion XLVIII[45]. A common feature of these three species is the presence of electron-withdrawing cyanide substituents, which cause an Umpolung of the B−H bond, thus enabling deprotonation. Scheme 8. Synthesis and solid state structure of the boryl anion 19. To investigate this peculiary more closely, calculations were carried out on the BP86/def2-SVPLevel and the partial charges (NBO) of boron-bound hydrogen at BH3, [(cAAC)BH3] and 1 calculated (Figure 1). Figure 1. Partial charges (NBO) of BH3, [(cAAC)BH3] and 1 (BP86/def2-SVP). By replacing one of the hydrides in [(cAAC)BH3] by a cyano group, the boron-bound hydrogens in 1 become significantly more protic (+0.038, +0.080). Even coordination of the cAAC ligand to BH3 results in two of the previously hydridic hydrogens (BH3: partial charge: –0.101) to became much more positive (+0.050). The nucleophilic character of 19 was then examined by reactivity studies. For example, the reaction of 19 with [(PPh3)AuCl] led to the formation of the gold boryl complex [(cAAC)BH(CN)(AuPPh3)] (20) (Scheme 9). While the reaction of 19 with trityl derivatives did not yield any isolable compound, reactions with the heavier group 14 homologues R3ECl (R = Ph, E = Ge, Sn und Pb; R = Me, E = Sn) yielded a series of triorganotetrel boranes, compounds 21-24 (Schema 9). Scheme 9. Synthesis of 20-24 from boryl anion 19. The reaction of the corresponding silyl derivatives R3SiCl with 19, however, provided a different course of reaction (Scheme 10). Scheme 10. Synthesis of 25-28 from boryl anion 19. In contrast to the higher homologues, the reaction of 19 with the silyl derivatives occurs not at the soft, nucleophilic boron center but at the harder cyano nitrogen atom. The silylisonitrile compounds 25 and 26 were initially formed as the kinetic products. However, 25 was labile and transformed rapidly into the silylborane 27. In contrast, the silylborane 28 could only be obtained by irradiation of 26. In addition, the bonding situation in 26 were examined by DFT calculations at the BP86/def2-SVP level. The Kohn–Sham MO analysis revealed a HOMO with π-character over the entire CcAAC‒B‒CCN unit with contiguous π-antibonding character across the C‒N units of both donor ligands (Figure 2). Figure 2. X-ray crystallographic (left) and calculated (center) structure and HOMO (right) of 26 (BP86/def2-SVP). The electronic nature of 26 was also investigated experimentally. While the reaction of 26 with Cu(I)Cl, which yielded Cu(0), demonstrated its high reducing power, the reaction with elemental lithium in THF led to the formation of the boryl anion 19 and LiSiPh3. In contrast, the reaction of 26 with BH3∙SMe2 quantitatively gave [(cAAC)BH3] (29), while the (triphenyltin)borane 22 was quantitatively formed upon reaction with Ph3SnCl (Scheme 11). This divergent reaction behavior justifies a description of 26 as both a silylisonitrile borylene and a zwitterionic silylium boryl species. Scheme 11. Ambiphilic reactivity of 26 as a neutral silylisonitrile borylene (A) or as a zwitterionic silylium boryl species (B). Chapter 4 Synthesis and reactivity of [(cAAC)BH3] (29) Since [(cAAC)BH2(CN)] 1 can be selectively deprotonated and [(cAAC)BH3] (29) also dispays slightly protic boron-bound hydrogens (see Figure 1), attempts were made to deprotonate 29. For this purpose [(cAAC)BH3] (29) was synthesized and its reactivity towards anionic (Scheme 12) and neutral (Scheme 13) nucleophiles was investigated. Instead of a deprotonation, the reaction of [(cAAC)BH3] (29) with organolithium compounds leads tot he formation of lithium borates 30, 32 and 34, in which a hydrogen has migrated from boron to cAAC and the organic residue is bound to the boroncenter. This reactivity is applicable to sp3-, sp2- and sp-hybridized organolithium compounds. The reaction mechanism was also examined by DFT-calculations. These clearly show that [(cAAC)BH3] (29) is in equilibrium with the tautomeric borane [(cAAC‒H)BH2] by migration of one hydrogen from boron to cAAC. The strongly exergonic nucleophilic addition of the LiR bases with [(cAAC‒H)BH2] (30: ‒29.6 kcal∙mol‒1; 32: ‒12.4 kcal∙mol‒1) directly leads to the formation of the lithium borates 30 and 32. The latter then react with Me3SiCl under elimination of LiCl and Me3SiH to form the cAAC-borane adducts 31, 33 and 35 (Scheme 12). Scheme 12. Synthesis of 30-35 by direct nucleophilic substitution at sp3-boron. This two-step synthesis is remarkable because it is effectively an unusual substitution at a sp3-borane. Furthermore, the reactivity of [(cAAC)BH3] (29) towards neutral Lewis bases was investigated. Thus, [(cAAC−H)BH2(cAAC)] 36 was obtained from the reaction with cAAC and [cAAC−H)BH2(pyr)] 37 from the reaction with pyridine (Scheme 13). Scheme 13. Synthesis of 36 and 37 from 29. The mechanism of formation of 36 and 37 was also investigated by DFT calculations, which suggest reversible formation of the pyridine adduct 37. This was also confirmed experimentally in solution by a VanÂŽt Hoff equilibrium analysis and in the solid state by removal of pyridine from 37 to yield pure 29. In contrast, the formation of 36 is irreversible. Chapter 5 Synthesis and comparison of new diborenes In the context of this work, a series of new NHC thienylborane adducts (42-50) was also synthesized and successfully reduced to the corresponding diborenes (51-58) in the majority of cases (Scheme 14). Scheme 14. Synthesis of NHC thienylborane adducts 42-50 and the rediction to the corresponding diborenes 51-58. Most of the compounds were completely characterized, enabling comparison of NMR spectroscopic and structural data. The 11B NMR resonances of 51-58 were observed within a narrow range (20.2 to 22.5 ppm), which was consistent with that of previously reported analogues X and XI (21.3 and 22.4 ppm).[17] In the solid state, the diborenes displayed a B−B distance of 1.576(4) Å (51) to 1.603(4) Å (54), with no apparent trend, depending on their substitution. These bond lenghts are almost identical to already known IMe-stabilized 1,2-diaryldiborenes (1.585(4) to 1.593(5) Å).[16-17] Some of these diborenes were not stable in solution depending on the substitution pattern, and therefore could not be isolated. Nevertheless, UV-vis spectroscopic data of 51, 52, 57 and 58 were obtained (Figure 3). Figure 3.

    Chemie fĂŒr den russischen Forst

    No full text

    Investigation and Characterization of Human-Health Related Microbes in Public Transport

    No full text
    Public transportation plays a significant role in the transmission of pathogenic organisms, particularly highlighted by the COVID-19 pandemic. This study focuses on the investigation of microbial diversity and distribution across different areas of the passenger cabin, using a local train in North-Rhine Westphalia as an example. The sampling was conducted on the RE6 train, using various types of sampling techniques to sample different areas and surfaces on the train, which were subsequently identified using MALDI-TOF MS. Five clinically significant microorganisms – Acinetobacter lwoffii, Citrobacter freundii, Enterobacter cloacae, Enterococcus faecalis, and Escherichia coli – were subjected for further experiments regarding their growth physiology and resistance behavior towards antibiotics, UV-C irradiation, desiccation, cleaning agents and disinfectants. The MALDI-TOF MS results showed that the majority of the microorganisms isolated from the RE6 train were abundant environmental microbes or part of the human microbiome. Noteworthy antimicrobial susceptibility was only displayed by E. cloacae. The desiccation experiment showed that C. freundii, E. cloacae, and E. faecalis were able to survive for a period of 14 days under dry conditions. Moreover, all examined isolates displayed relatively moderate levels of UV-C irradiation resistance. Future research should encompass more sampling campaigns to gain a deeper understanding of the train microbiome
    • 

    corecore