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Simultaneously acquired micro-analytical x-ray and electron energy loss signals were 

obtained from a bimetallic core-shell nanoparticle system (FePt@Fe3O4). The signals were 

decomposed using independent component analysis and the extracted components were used 

to separately quantify the composition of the spatially overlapping core and shell phases in the 

nano-heterostructure. The utilization of the complementary strengths of energy dispersive x-

ray and electron energy-loss spectroscopy microanalysis has enabled the quantification of 

both light and heavy elements in a single spectrum image acquisition. 

 

1. Introduction 

The scanning transmission electron microscope (STEM) has had several upgrades to its 

analytical capabilities in recent years. The latest generation of STEMs are typically equipped 

with energy dispersive X-ray (EDX) systems with much improved signal collection 

efficiencies over the conventional systems fitted to instruments assembled in the past decade 

[1,2]
. Modern STEMs are also fitted with ultra-fast electron energy loss spectroscopy (EELS) 

spectrometers 
[3]

. These contemporary systems have reduced the acquisition time and electron 

dose required to acquire high spatial resolution two-dimensional (2D) elemental maps with 

good signal-to-noise ratios. The location of the EDX, EELS and imaging detectors in a typical 

STEM system permits the simultaneous acquisition of signal outputs from these detectors.  
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Despite the obvious advantage of acquiring multiple signals for a more complete 

characterization of a material, examples of simultaneous EELS and EDX acquisitions in the 

literature are few, with some limitations in hardware, software, acquisition and 

synchronization remaining. In 2014, Kothleitner and colleagues acquired simultaneous low-

loss and high-loss EELS and EDX signals and were able to demonstrate assumption-free 

compositional analysis 
[4]

. Dual EDX+EELS analysis has also been applied recently to 

electron tomography to obtain 3D elemental reconstructions 
[5]

.  

 

EELS and EDX can be viewed as complementary microanalysis techniques. EDX has a wide 

energy range (typically 0-20 keV) allowing for the detection of nearly all the elements in the 

periodic table in a single acquisition. However, low energy X-rays from light elements are 

subject to strong absorption before detection in both the sample and detector. This is in spite 

of modern windowless detector designs minimizing x-ray absorption in the detector and 

offering improved x-ray visibility at low energies. EELS offers superior energy resolution, 

enabling access to chemical bonding information, but over a much more limited and lower 

energy range (typically less than 2-3 keV). As a result, X-ray quantification is typically 

performed for heavy elements and EELS quantification for light elements. One potential 

benefit of combining EDX and EELS is, therefore, access to both light and heavy element 

quantification from a single acquisition. 

 

The capacity to rapidly acquire large EDX and EELS spectrum images with modern hardware 

has also pushed the need for efficient methods to analyze big datasets 
[6]

. Multivariate 

statistical techniques, including principal component analysis (PCA) and independent 

component analysis (ICA) 
[7]

, can be used to recast raw spectrum image data onto a new set of 

additive basis factors, each with an associated loading coefficient. Large datasets can often be 

well represented by a just a few basis factors, rather than thousands if one considers each 
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pixel in a large spectrum image separately. PCA decomposes a dataset into a set of 

component factors. The first factor represents the maximum variance in the raw data, and 

each succeeding factor the next highest variance orthogonal to the preceding factors. On the 

other hand, ICA decomposes a dataset into statistically independent components, defined as 

maximally non-Gaussian in their joint distribution. A common analogy of ICA is the ‘cocktail 

party problem’, in which the challenge is to separate the sounds of individual speakers from 

the mixed conversations recorded by microphones at different locations in a room. In the case 

of spectrum imaging, each (x,y) pixel can be thought of as a microphone, and the signal axis 

(E) as the recorded sound amplitude. ICA has been applied to EDX 
[8,9]

 and EELS 
[10,11]

 

spectrum images. More recently, the components of ICA have been used to find the 

composition of the bimetallic core in a core-shell nanoparticle system 
[12]

 and the composition 

of gamma’ precipitates in a nickel-based superalloy 
[13]

. Here, we apply PCA and ICA 

methods to a dual EDX+EELS dataset, enabling the measurement of both core and shell 

compositions in core-shell heterostructures.  

 

2. Materials and Methods 

A solution of magnetic core-shell nano-particles, comprising FePt bimetallic cores and iron 

oxide shells, was drop-cast onto a 3 mm holey carbon copper grid prior to characterization by 

electron microscopy. EDX and EELS data were acquired using an FEI Osiris TEM/STEM 

equipped with a high brightness Schottky X-FEG gun, a Super-X EDX system and a Gatan 

Enfinium EELS spectrometer. High resolution STEM images were obtained separately on an 

aberration corrected FEI Titan cubed TEM. The Osiris TEM was operated at 200 kV and the 

native TIA software was used to acquire the dual EDX+EELS spectrum images, in which the 

raster beam scan was coordinated with the simultaneous collection of HAADF, EDX and 

EELS signals (Fig. 1).  
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Figure 1. A schematic of the simultaneous acquisition of EDX and EELS datasets. 

 

Data post-processing and EDX and EELS quantification was performed using the HyperSpy 

software package 
[14]

 and Digital Micrograph. PCA and ICA decompositions were also 

performed using the FASTICA algorithm 
[15]

 as implemented in Scikit learn 
[16]

 and accessed 

in the machine learning package of HyperSpy. 

 

3. Results 

3.1.  STEM Imaging 

Figure 2 displays HAADF-STEM images of a (a) small nanoparticle cluster and (b) an 

isolated nanoparticle. The higher brightness of the particle core relative to the shell is 

consistent with the expected FePt@Fe3O4 core-shell composition based on the findings of a 

previous study 
[17]

. The atomically resolved images also indicate that the crystalline metallic 

core is surrounded by a continuous oxide layer that lacks long-range order and appears 

partially amorphous in character. 
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Figure 2. HAADF-STEM imaging of FePt@iron oxide nanoparticles. (a) HR-STEM image 

of a particle cluster. (b) Enlarged and frame averaged image of an isolated particle. 

 

3.2.  Independent Component Analysis 

In an attempt to to achieve optimum magnetic properties, a bimetallic core composition of 

50/50 FePt was targeted synthetically. However, due to the spatial overlap of the core and the 

shell in projection, it is challenging to quantify the composition of these phases using 

traditional methods because the signals from each phase will be mixed upon detection. In the 

present case, we acquire both EDX and EELS signals from a representative particle cluster 

and utilize multivariate statistical methods, including PCA and ICA, to separate the mixed 

signals originating from the particle cores and shells. These separated signals, or components, 

are subsequently analyzed and quantified to find the compositions of particle cores and shells. 

 

3.2.1. EDX-PCA 

 

Figure 3 displays PCA results of the EDX spectrum image obtained from a region enclosing a 

representative cluster of particles (a,i). The spectrum image was acquired with a 0.7 nA 

focused probe, sampled at 40x40 pixels with a 1 nm pixel size and a dwell time of 100 

ms/pixel. The scree plot (a,ii) shows that most of the variance in the dataset can be explained 
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by three orthogonal principal components (PCs); PC#0, PC#1 and PC#2 (the first five PCs are 

displayed in the SI). The component factors are plotted in (a) and their respective pixel-wise 

loading weights are displayed in grey-scale in (b-d). PC#0 contains peaks from all the 

elements expected to be present in the region, namely carbon (from the support membrane), 

oxygen, iron and platinum (C, O, Fe, Pt). A copper (Cu) peak is also detected and is assumed 

to be spurious in origin, likely coming from the supporting copper grid bars. The spatial 

loading of PC#0 matches the HAADF-STEM signal and is positively valued over the particle 

cores and shells. PC#1 contains a strong C-K -L and Pt-M peaks. 

Spatially, PC#1 is positively valued in the support region but negatively valued in the particle 

core regions. Finally, PC#2 contains a negative C-Ka peak, positive O-Ka and Fe-La peaks, 

negative Pt-L and Pt-M peaks, and positive Fe-Ka and Fe-Kb peaks. The PC#2 loading map is 

positively valued over the particle shells, close to zero over the support and negatively valued 

over the particle cores. A summary of the principal component decomposition is provided in 

Table 1. 

 

Figure 3. PCA of the EDX spectrum image. (a) The extracted PC factors PC#0 (red), PC#1 

(green) and PC#2 (blue) from (i) a region enclosing a nanoparticle cluster (red box). (ii) A 
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scree plot of the variance in the dataset. The spatial loadings of (b) PC#0, (c) PC#1 and (d) 

PC#2. 

Table 1. PCA decomposition summary. 

PC# Peaks present Loading polarity 

Positive Negative Core Shell Support 

0 C-Kα, O-Kα, Fe-

Lα, Fe-Lβ, Pt-Mα, 

Pt-Mβ, Fe-Kα, Fe-

Kβ, Cu-Kα, Pt-Lα, 

Pt-Lβ, Pt-Lγ 

None Positive Positive Zero 

1 C-K, O-K Pt-M, Pt-M, Pt-

L, Pt-L, Pt-L 

Negative Positive Positive 

2 O-K, Fe-L, Fe-

L, Fe-K, Fe-K 

Pt-Mα, Pt-Mβ, Cu-

Kα, Pt-Lα, Pt-Lβ, 

Pt-Lγ 

Negative Positive Zero 

 

While the PCA decomposition shows that just three principal components are sufficient to 

explain most of the variance in the spectrum image, the components themselves, both in 

spectral and spatial form, are difficult to interpret physically by virtue of the presence of 

negative factor peaks and negative loading values.  

 

3.2.2 EDX-ICA 

Given the difficulty of interpreting PCA, we have developed the use an alternative 

decomposition method, ICA, in an attempt to obtain a clearer picture of the internal data 

structure. Figure 4 displays a summary of the ICA decomposition of the EDX spectrum image 

analyzed in the previous Section. From the PCA analysis above, it was found that the 

spectrum image could be largely explained by three PCs. Thus three independent components 

(ICs) have been sought by ICA. The extracted IC factors are displayed in Fig. 4(a) and their 

respective pixel-wise loading weights are displayed in grey-scale in (b-d).  
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Figure 4. ICA of the EDX spectrum image. (a) The extracted IC factors IC#0 (red), IC#1 

(green) and IC#2 (blue). The spatial loadings of (b) IC#0, (c) IC#1 and (d) IC#2. 

 

Most notably, the ICA decomposition does not contain any appreciable negative peaks in the 

factors or negative weights in the loadings. Based on the X-ray peaks present in each factor 

and their respective spatial distributions, it appears as though IC#0 represents the iron oxide 

shell, IC#1 the Pt-rich bimetallic cores and IC#2 the carbon support. A summary of the X-ray 

peaks present and the loadings is provided in Table 2. 

Table 2. ICA decomposition summary. 

IC# Peaks present Loading polarity 

Positive Negative Core Shell Support 

0 O-Kα Fe-Lα, Fe-

Lβ, Fe-Kα, Fe-Lβ, 

Cu-Kα 

None Positive 

(reduced) 

Positive Zero 

1 Pt-Mα, Pt-Mβ, Fe-

Kα, Fe-Kβ, Cu-Kα, 

Pt-Lα, Pt-Lβ, Pt-Lγ 

None Positive Zero Zero 

2 C-K None Absent Absent Positive 

 

3.2.3 EELS-ICA 

We now turn to analysis of the EELS spectrum image that was acquired simultaneously with 

the EDX signal. Given the success of the ICA applied to the EDX data cube, we applied the 
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same decomposition method to the EELS dataset. Figure 5 displays a summary of the 

resulting ICA decomposition. As with the EDX spectrum image, the total variance in the 

EELS dataset can be largely explained by three PCs (a, i). Thus, 3 components were selected 

for ICA (the first five PCs are displayed in the SI). The extracted IC factors are shown in Fig. 

5(a) and their respective spatial loadings in (b-d). The IC factors strongly resemble typical 

EELS core-loss spectral shapes. We observe an exponentially decaying ‘background’ in each 

of the components. IC#0 and IC#1 also feature saw-tooth edges containing fine structural 

oscillations superimposed on the background signal. The location of the first and second 

edges in IC#0 coincide with the expected location of O-K and Fe-L23 ionization edges at 532 

eV and 702 eV respectively. The IC#0 loading is concentrated over the particle shells. The 

location of the first and second edges in IC#1 coincide with the expected ionization edges of 

Pt-N23 and Fe-L23, and spatially it maps to the location of the particle cores. IC#2 contains 

no appreciable features above the background. It maps over the entire region, with increased 

intensity at the edges of the particle cluster. It is likely to represent the extended tail of the 

lower energy carbon edge at 284 eV, which lies outside of the EELS detection window, and is 

attributed to grid material. 
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Figure 5. ICA of the EELS spectrum image. (a) The extracted IC factors IC#0 (red), IC#1 

(green) and IC#2 (blue) and a scree plot of the dataset (i). The spatial loadings of (b) IC#0, (c) 

IC#1 and (d) IC#2. 

 

The fine structure in the O-K and Fe-L23 edges observed in IC#0 and the Pt-N23 and Fe-L23 

edges in IC#1 are in excellent agreement with reference spectra 
[18]

.  

 

3.3.  Quantification 

Having obtained what appear to be physically interpretable decompositions of the EDX and 

EELS spectrum images obtained simultaneously from the representative particle cluster, we 

have now attempted to find the compositions of the bimetallic particle cores and the phase of 

the iron oxide shells by quantifying the unmixed component factors obtained by ICA. For the 

bimetallic cores, ICA has been recently used to successfully extract their composition 
[12]

. 

Here we repeat general the methodology on these core-shell particles, which were produced in 

the same synthesis, but we now extend the quantification to both EDX and EELS datasets. 
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3.3.1. EDX quantification 

Figure 6 displays the quantification of IC#0 extracted by ICA from the EDX spectrum image. 

The Fe-Kα and Pt-Lα peaks were fitted to Gaussian functions, whose amplitudes, along with 

standard-less k-values, were used in the Cliff−Lorimer quantification method. A Pt:Fe 

composition of 85:15 (at.%) was calculated. This composition lies within one standard 

deviation (3.3 at%) of the average FePt bimetallic seed composition measured previously 

(82.0:18.0 at.% Pt:Fe) 
[12]

. 

 

 

Figure 6. EDX quantification of the IC representing the bimetallic cores (IC#0). (i) Integrated 

intensities of the Fe- -

two window method (boxed, solid) prior to Gaussian fitting of the peaks (boxed, dashed). 

 

3.3.2. EELS quantification 

Figure 7 displays the analysis of energy loss near-edge structures (ELNES) of the O-K and 

Fe-L23 edges contained in EELS component IC#0. Good agreement between the shell-only 

spectrum and component IC#0 is observed in (a). Previous systematic EELS studies of the 
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iron-oxygen system have shown that the oxygen and iron ELNES can be used to determine 

the nature of the iron- - -Fe2O3 
[19,20]

. For the O-

K edge, the intensity of the pre-peak (recorded maximum at 535 eV) has been observed to 

increase relative to the dominant peak (maximum at 546 eV) with increasing oxygen fraction 

[19]
. By adopting a similar approach to that described by Colliex and co-workers we fitted the 

pre-peak and dominant peak in the O-K signal to two Gaussian functions and obtained an 

integrated peak area ratio of 0.16+/-0.02 (Fig. 7b). This peak-ratio is uniquely consistent with 

that measured for Fe3O4 
[19]

. The peak-ratio error was estimated by recalculation of the area 

ratio with varying Gaussian fit parameters. Multiple scattering effects are assumed to be 

negligible for the nanometer-sized particles analyzed.  

 

The Fe-L23 ELNES features two sharp white-line peaks (Fig. 7c). By again following the 

procedure outlined in 
[19]

, we measure a white-line intensity ratio of 4.7+/-0.4, which is within 

error of that expected for FeO and Fe3O4. FeO can be ruled out as a candidate structure 

because it features a substantially reduced O-K pre-peak, contrary to our observations. The 

larger error estimate for the Fe-L23 white-line ratio here is due to uncertainty in the shape of 

the double arctan continuum background, which was subtracted from the signal prior to peak 

fitting (Fig. 7c insert). It should also be noted that an improved fit of the Fe-L23 white lines 

was obtained by fitting two Gaussians to the L3 peak, and one to the L2 peak. The physical 

origin of the double Gaussian Fe-L3 fit may be due to crystal field effects, which act to split 

the degenerate 3d orbitals of an isolated Fe cation into multiplet orbital levels in the extended 

solid, depending on the symmetry of the surrounding ligand structure 
[21]

. Based on the 

ELNES analysis of the O-K and Fe-L23 edges we conclude that the shell is likely Fe3O4. 
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Figure 7. Analysis of the EELS IC representing the particle shells (IC#0). (a) A comparison 

of a shell-only spectrum (location shown in insert) with IC#0. (b) The background subtracted 

O-K edge (O-K sub.) featuring a Gaussian-fitted pre-peak (red) and dominant peak (green). 

(c) The background and continuum subtracted Fe-L23 edge (Fe-L23 sub.) featuring Gaussian-

fitted double white-line peaks L3 (red+green) and L2 (orange). The background-only 

subtracted edge and double arctan-fitted continuum are shown in the insert. 

 

4.  Discussion 

As detailed above, the variance in both the EDX and EELS spectrum images obtained from a 

region enclosing a cluster of FePt@Fe3O4 core-shell nanoparticles, was found to be largely 

explained by three principal components. In addition, the three independent components 

extracted from each dataset were each found to be representative of the overlapping phases 

present in the sampled region; the bimetallic core, the iron oxide shell and the carbon support. 

This consistency in the EDX and EELS decompositions, in addition to the general appearance 
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of the component spectra, lent credence to their physical interpretation. Furthermore, the 

quantification of the EDX ICA core spectrum provided a bimetallic Pt:Fe composition which 

was in excellent agreement with composition measurements on the bare particle cores 

reported previously 
[12]

. If the spatially overlapping shell is not accounted for when 

quantifying the EDX spectra extracted from the core regions, conventional standardless Cliff-

Lorimer quantification gives an iron-platinum atomic ratio of Pt:Fe = 61:39 at.% in the core 

regions.  The additional contribution of iron in the shell to the EDX spectrum biases the 

bimetallic core quantification, resulting in a higher apparent iron content in the core than that 

obtained from EDX IC#0 (Pt:Fe = 85:15 at.%). 

In the compositional analysis of the iron and oxygen-containing particle shells, EDX 

quantification cannot be reliably used due to the inherently high X-ray absorption of low 

energy oxygen X-rays by either the sample or the instrumentation. We therefore utilized the 

simultaneously obtained EELS signals and the ICA decomposition to obtain a more complete 

characterization of the shell. By calculating peak intensity-ratios for the O-K and Fe-L23 

ELNES signals, we determined that the shells were likely Fe3O4. These findings were 

consistent with similarly obtained measurements on an analogous system 
[17]

. The sharp 

white-line peaks in the Fe-L23 ELNES arise from electron transitions to from the 2p3/2 and 

2p1/2 spin-orbit split levels to unoccupied 3d levels 
[21]

. They are not included in the Hartree-

Slater central field model, which assumes elements are in atomic form, and their presence can 

lead to strong deviations from theoretical scattering cross-sections of up to 50% for transition-

metal oxides 
[22]

, thus compromising scattering cross-section-based quantification. For 

example, when applied to the EELS shell only and ICA spectra obtained here, Hartree-Slater 

based quantification yield iron-oxygen ratios (Fe:O) of 31:69 and 33:67 respectively (Fig. S3). 

Theses ratios differ appreciably from that expected for the Fe3O4 phase (Fe:O = 43:57). It was 

therefore necessary to adopt the white-line intensity ratio-based approach for this iron oxide 

system 
[19]

. Another advantage of PCA and ICA analysis over conventional spectrum image 
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quantification methods lies in the noise reduction of the decomposed dataset. This stems from 

the rejection of low variance components present in the raw data. In the present context, 

decomposition of the EELS dataset enabled the Pt-N23 edge to be visible above the noise (Fig. 

5a).  

5.  Conclusions 

The synergistic use of EDX and EELS, in the form of dual spectrum imaging, complemented 

by powerful data decomposition methods, enabled the complete composition of bimetallic 

core-shell nano-heterostructures to be determined from a single beam scan. Here, EDX 

signals were used to determine the composition of the bimetallic particle cores, and 

simultaneously acquired EELS signals were used to determine the composition of the particle 

shells. The capacity to reliably separate such mixed analytical signals from complex 

heterostructures can also reduce the number of analytical steps that might otherwise be taken 

en-route to the synthesis of nano-heterostructures or complex nanostructured materials. This 

promises to reduce the time and cost required for their complete characterization. 
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ToC figure 

TOC text: A new method of determining the composition of spatially overlapping phases in a 

core-shell nanoparticle system is described. The technique involves the decomposition of 

simultaneously acquired micro-analytical x-ray (green) and electron energy loss signals (red) 

by independent component analysis, enabling the separation of spatially and spectrally 

overlapping signal components from both light and heavy elements. 

 
 


