89 research outputs found

    High Energy X-Ray Dosimetry Using (ZnO)0.2(TeO2)0.8 Thin Filmbased Real-time X-Ray Sensor

    Get PDF
    This study reports the dosimetric response of a (ZnO)0.2(TeO2)0.8 thin film sensor irradiated with high-energy X-ray radiation at various doses. The spray pyrolysis method was used for the film deposition on soda-lime glass substrate using zinc acetate dehydrate and tellurium dioxide powder as the starting precursors. The structural and morphological properties of the film were determined. The I-V characteristics measurements were performed during irradiation with a 6 MV X-ray beam from a Linac. The results revealed that the XRD pattern of the AS-deposited thin film is non-crystalline (amorphous) in nature. The FESEM image shows the non-uniform shape of nanoparticles agglomerated separately, and the EDX spectrum shows the presence of Te, Zn, and O in the film. The I-V characteristics measurements indicate that the current density increases linearly with X-ray doses (0-250 cGy) for all applied voltages (1-6 V). The sensitivity of the thin film sensor has been found to be in the range of 0.37-0.94 mA/cm2 /Gy. The current-voltage measurement test for fading normalised in percentage to day 0 was found in the order of day 0 > day 15 > day 30 > day 1 > day 2. These results are expected to be beneficial for fabricating cheap and practical X-ray sensors

    Design and fabrication of a cocoyam (Colocasia esculenta) peeling machine

    Get PDF
    The processing of cocoyam tubers for industrial or human use involves different operations of which peeling is the major problem. This study was aimed at designing, fabricating and carrying out performance evaluation of a cocoyam peeling machine, taking into consideration some physical and mechanical properties of the cocoyam tubers. The machine was evaluated based on the following parameters which includes; throughput capacity and peeling efficiency at the speeds of 400 rpm, 700 rpm and 933 rpm. Results revealed that, for all the speeds tested in the experiment, the corresponding peeling efficiencies of the machine were 50%, 64% and 68% respectively while that of the throughput capacities were 63.20 kg/hr, 84.90 kg/hr and 112.92 kg/hr respectively. It was observed that 933 rpm speed was the most suitable speed for the operation of this machine, as it had higher peeling efficiency of 68% with a throughput capacity of 112.92 kg/hr. These results showed appreciable improvement over manual method which is 20 – 35 kg/hr

    Adaptation Strategies for Personalized Gait Neuroprosthetics

    Get PDF
    Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal. Therefore, this paper presents an overview of challenges and research directions regarding an interface with the peripheral nervous system, an interface with the central nervous system, and the requirements of interface computing architectures. The interface should be modular and adaptable, such that it can provide assistance where it is needed. Novel data processing technology should be developed to allow for real-time processing while accounting for signal variations in the human. Personalized biomechanical models and simulation techniques should be developed to predict assisted walking motions and interactions between the user and the device. Furthermore, the advantages of interfacing with both the brain and the spinal cord or the periphery should be further explored. Technological advances of interface computing architecture should focus on learning on the chip to achieve further personalization. Furthermore, energy consumption should be low to allow for longer use of the neuroprosthesis. In-memory processing combined with resistive random access memory is a promising technology for both. This paper discusses the aforementioned aspects to highlight new directions for future research in gait neuroprosthetics.Peer ReviewedPostprint (published version

    Characterisation of colistin resistance in Gram-negative microbiota of pregnant women and neonates in Nigeria

    Get PDF
    A mobile colistin resistance gene mcr was first reported in 2016 in China and has since been found with increasing prevalence across South-East Asia. Here we survey the presence of mcr genes in 4907 rectal swabs from mothers and neonates from three hospital sites across Nigeria; a country with limited availability or history of colistin use clinically. Forty mother and seven neonatal swabs carried mcr genes in a range of bacterial species: 46 Enterobacter spp. and single isolates of; Shigella, E. coli and Klebsiella quasipneumoniae. Ninety percent of the genes were mcr-10 (n = 45) we also found mcr-1 (n = 3) and mcr-9 (n = 1). While the prevalence during this collection (2015-2016) was low, the widespread diversity of mcr-gene type and range of bacterial species in this sentinel population sampling is concerning. It suggests that agricultural colistin use was likely encouraging sustainment of mcr-positive isolates in the community and implementation of medical colistin use will rapidly select and expand resistant isolates

    Heme Mediated STAT3 Activation in Severe Malaria

    Get PDF
    The mortality of severe malaria [cerebral malaria (CM), severe malaria anemia (SMA), acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)] remains high despite the availability associated with adequate treatments. Recent studies in our laboratory and others have revealed a hitherto unknown correlation between chemokine CXCL10/CXCR3, Heme/HO-1 and STAT3 and cerebral malaria severity and mortality. Although Heme/HO-1 and CXCL10/CXCR3 interactions are directly involved in the pathogenesis of CM and fatal disease, the mechanism dictating how Heme/HO-1 and CXCL10/CXCR3 are expressed and regulated under these conditions is still unknown. We therefore tested the hypothesis that these factors share common signaling pathways and may be mutually regulated.We first clarified the roles of Heme/HO-1, CXCL10/CXCR3 and STAT3 in CM pathogenesis utilizing a well established experimental cerebral malaria mouse (ECM, P. berghei ANKA) model. Then, we further determined the mechanisms how STAT3 regulates HO-1 and CXCL10 as well as mutual regulation among them in CRL-2581, a murine endothelial cell line.The results demonstrate that (1) STAT3 is activated by P. berghei ANKA (PBA) infection in vivo and Heme in vitro. (2) Heme up-regulates HO-1 and CXCL10 production through STAT3 pathway, and regulates CXCL10 at the transcriptional level in vitro. (3) HO-1 transcription is positively regulated by CXCL10. (4) HO-1 regulates STAT3 signaling.Our data indicate that Heme/HO-1, CXCL10/CXCR3 and STAT3 molecules as well as related signaling pathways play very important roles in the pathogenesis of severe malaria. We conclude that these factors are mutually regulated and provide new opportunities to develop potential novel therapeutic targets that could be used to supplement traditional prophylactics and treatments for malaria and improve clinical outcomes while reducing malaria mortality. Our ultimate goal is to develop novel therapies targeting Heme or CXCL10-related biological signaling molecules associated with development of fatal malaria

    The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance

    Get PDF
    Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries

    Get PDF
    Early development of the microbiome has been shown to affect general health and physical development of the infant and, although some studies have been undertaken in high-income countries, there are few studies from low- and middle-income countries. As part of the BARNARDS study, we examined the rectal microbiota of 2,931 neonates (term used up to 60 d) with clinical signs of sepsis and of 15,217 mothers screening for blaCTX-M-15, blaNDM, blaKPC and blaOXA-48-like genes, which were detected in 56.1%, 18.5%, 0% and 4.1% of neonates’ rectal swabs and 47.1%, 4.6%, 0% and 1.6% of mothers’ rectal swabs, respectively. Carbapenemase-positive bacteria were identified by MALDI-TOF MS and showed a high diversity of bacterial species (57 distinct species/genera) which exhibited resistance to most of the antibiotics tested. Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae/E. cloacae complex, the most commonly found isolates, were subjected to whole-genome sequencing analysis and revealed close relationships between isolates from different samples, suggesting transmission of bacteria between neonates, and between neonates and mothers. Associations between the carriage of antimicrobial resistance genes (ARGs) and healthcare/environmental factors were identified, and the presence of ARGs was a predictor of neonatal sepsis and adverse birth outcomes

    Flying to Quality: Cultural Influences on Online Reviews

    Get PDF
    Customers increasingly consult opinions expressed online before making their final decisions. However, inherent factors such as culture may moderate the criteria and the weights individuals use to form their expectations and evaluations. Therefore, not all opinions expressed online match customers’ personal preferences, neither can firms use this information to deduce general conclusions. Our study explores this issue in the context of airline services using Hofstede’s framework as a theoretical anchor. We gauge the effect of each dimension as well as that of cultural distance between the passenger and the airline on the overall satisfaction with the flight as well as specific service factors. Using topic modeling, we also capture the effect of culture on review text and identify factors that are not captured by conventional rating scales. Our results provide significant insights for airline managers about service factors that affect more passengers from specific cultures leading to higher satisfaction/dissatisfaction
    corecore