42 research outputs found

    Combining gene mapping and phenotype assessment for fast mutation finding in non consanguineous autosomal recessive retinitis pigmentosa: mutation finding in non consanguineous families

    Get PDF
    International audienceAmong inherited retinal dystrophies, autosomal recessive retinitis pigmentosa (arRP) is the most genetically heterogenous condition with 32 genes currently known that account for ~60 % of patients. Molecular diagnosis thus requires the tedious systematic sequencing of 506 exons. To rapidly identify the causative mutations, we devised a strategy that combines gene mapping and phenotype assessment in small non consanguineous families. Two unrelated sibships with arRP had whole-genome scan using SNP microchips. Chromosomal regions were selected by calculating a score based on SNP coverage and genotype identity of affected patients. Candidate genes from the regions with the highest scores were then selected based on phenotype concordance of affected patients with previously described phenotype for each candidate gene. For families RP127 and RP1459, 33 and 40 chromosomal regions showed possible linkage, respectively. By comparing the scores with the phenotypes, we ended with one best candidate gene for each family, namely TULP1 and C2ORF71 for RP127 and RP1459, respectively. We found that RP127 patients were compound heterozygous for 2 novel TULP1 mutations, p.Arg311Gln and p.Arg342Gln, and that RP1459 patients were compound heterozygous for 2 novel C2ORF71 mutations, p.Leu777PhefsX34 and p.Leu777AsnfsX28. Phenotype assessment showed that TULP1 patients had severe early onset arRP and that C2ORF71 patients had a cone rod dystrophy type of arRP. Only 2 affected individuals in each sibship were sufficient to lead to mutation identification by screening the best candidate gene selected by a combination of gene mapping and phenotype characterization

    High prevalence of PRPH2 in autosomal dominant retinitis pigmentosa in France and characterization of biochemical and clinical features.

    Get PDF
    International audiencePURPOSE:To assess the prevalence of PRPH2 in autosomal dominant retinitis pigmentosa (adRP), to report six novel mutations, to characterize the biochemical features of a recurrent novel mutation and to study the clinical features of adRP patients.DESIGN:Retrospective clinical and molecular genetic study.METHODS:Clinical investigations included visual field testing, fundus examination, high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence imaging and electroretinogram (ERG) recording. PRPH2 was screened by Sanger sequencing in a cohort of 310 French families with adRP. Peripherin-2 protein was produced in yeast and analyzed by Western blot.RESULTS:We identified 15 mutations, including 6 novel and 9 previously reported changes in 32 families, accounting for a prevalence of 10.3% in this adRP population. We showed that a new recurrent p.Leu254Gln mutation leads to protein aggregation, suggesting abnormal folding. The clinical severity of the disease in examined patients was moderate with 78% of the eyes having 1 to 0.5 of visual acuity and 52% of the eyes retaining more than 50% of the visual field. Some patients characteristically showed vitelliform deposits or macular involvement. In some families, pericentral RP or macular dystrophy were found in family members while widespread RP was present in other members of the same families.CONCLUSIONS:The mutations in PRPH2 account for 10.3% of adRP in the French population, which is higher than previously reported (0-8%) This makes PRPH2 the second most frequent adRP gene after RHO in our series. PRPH2 mutations cause highly variable phenotypes and moderate forms of adRP, including mild cases which could be underdiagnosed

    A novel locus (CORD12) for autosomal dominant cone-rod dystrophy on chromosome 2q24.2-2q33.1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rod-cone dystrophy, also known as retinitis pigmentosa (RP), and cone-rod dystrophy (CRD) are degenerative retinal dystrophies leading to blindness. To identify new genes responsible for these diseases, we have studied one large non consanguineous French family with autosomal dominant (ad) CRD.</p> <p>Methods</p> <p>Family members underwent detailed ophthalmological examination. Linkage analysis using microsatellite markers and a whole-genome SNP analysis with the use of Affymetrix 250 K SNP chips were performed. Five candidate genes within the candidate region were screened for mutations by direct sequencing.</p> <p>Results</p> <p>We first excluded the involvement of known adRP and adCRD genes in the family by genotyping and linkage analysis. Then, we undertook a whole-genome scan on 22 individuals in the family. The analysis revealed a 41.3-Mb locus on position 2q24.2-2q33.1. This locus was confirmed by linkage analysis with specific markers of this region. The maximum LOD score was 2.86 at θ = 0 for this locus. Five candidate genes, <it>CERKL</it>, <it>BBS5, KLHL23, NEUROD1</it>, and <it>SF3B1 </it>within this locus, were not mutated.</p> <p>Conclusion</p> <p>A novel locus for adCRD, named <it>CORD12</it>, has been mapped to chromosome 2q24.2-2q33.1 in a non consanguineous French family.</p

    : Peropsin in retinitis pigmentosa

    No full text
    Many genes from retinoid metabolism cause retinitis pigmentosa. Peropsin, an opsin-like protein with unknown function, is specifically expressed in apical retinal pigment epithelium microvilli. Since rhodopsin and RGR, another opsin-like protein, cause retinitis pigmentosa, we used D-HPLC to screen for the peropsin gene RRH in 331 patients (288 with retinitis pigmentosa and 82 with other retinal dystrophies). We found 13 nonpathogenic variants only, among which a c.730_731delATinsG that truncates the last two transmembrane-spanning fragments and the Lys284 required for retinol binding, but does not segregate with the disease phenotype. We conclude that RRH is not a frequent gene in retinitis pigmentosa

    Application of the person-centered care to manage responsive behaviors in clients with major neurocognitive disorders : a qualitative single case study

    No full text
    Objectives: Our study aimed to describe “how” and “why” the person-centered care (PCC) approach was applied within a long-term care (LTC) community to manage responsive behaviors (RBs) in individuals with major neurocognitive disorders.Methods: A descriptive holistic single case study design was employed in the context of an LTC community in Quebec, using semi-structured interviews and non-participatory observations of experienced care providers working with clients with RBs, photographing the physical environ-ment, and accessing documents available on the LTC community’s public website. A thematic content analysis was used for data analysis.Results: The findings generated insight into the importance of considering multiple components of the LTC community to apply the PCC approach for managing RBs, including a) creating a homelike environment, b) developing a therapeutic relationship with clients, c) engaging clients in mean-ingful activities, and d) empowering care providers by offering essential resources.Conclusions: Applying and implementing the PCC approach within an LTC community to manage clients’ RBs is a long-term multi-dimensional process that requires a solid foundation.Clinical implications: These findings highlight the importance of considering multiple factors relevant to persons, environments, and meaningful activities to apply the PCC approach within LTC communities to manage RBs

    Screening for a Canine Model of Choroideremia Exclusively Identifies Nonpathogenic CHM Variants.

    No full text
    International audienceChoroideremia is an X-linked, progressive photoreceptor degeneration disorder due to mutations in CHM. In addition to an atrophy of the outer retina, affected individuals present with a characteristic atrophy of the choroid. To search for a canine model, we screened the CHM gene of 37 dogs (22 breeds) with various forms of retinal dystrophies. We found 21 variations in 13 breeds (17 detected in only one breed and 4 shared by two or more) with 43% segregating in the same pedigree, a Great Dane female and a female offspring. Of particular interest were an exonic missense variation and a 3-bp intronic deletion near a splice acceptor site. However, although not detected in unrelated healthy Great Danes, these variants were nonpathogenic since they did not segregate with the disease phenotype in the pedigree. These results suggest that a CHM dog model may not be viable, as is the case for mouse and zebrafish

    X-Linked miRNAs Associated with Gender Differences in Rheumatoid Arthritis

    No full text
    Rheumatoid arthritis (RA) is an autoimmune disease that predominantly affects women. MicroRNAs have emerged as crucial regulators of the immune system, whose expression is deregulated in RA. We aimed at quantifying the expression level of 14 miRNAs located on the X chromosome and at identifying whether differences are associated with disease and/or sex. A case–control study of 21 RA patients and 22 age- and sex-matched healthy controls was performed on peripheral blood mononuclear cells. The expression level of five miRNAs (miR-221, miR-222, miR-532, miR-106a, and miR-98) was significantly different between RA and controls when stratifying by sex, and the expression level of four miRNAs (miR-222, miR-532, miR-98, and miR-92a) was significantly different between RA females and males. The expression quantitative trait loci (eQTL) analysis revealed a significant gender effect of the FoxP3 promoter polymorphism rs3761548A/C on miR-221, miR-222 and miR-532 expression levels, and of the FoxP3 polymorphism rs2232365A/G on miR-221 expression levels in PBMC of RA patients. These data further support the involvement of the X chromosome in RA susceptibility. X-linked miRNAs, in the context of sex differences, might provide novel insight into new molecular mechanisms and potential therapeutic targets in RA for disease treatment and prevention

    A truncated form of rod photoreceptor PDE6 β-subunit causes autosomal dominant congenital stationary night blindness by interfering with the inhibitory activity of the γ-subunit.

    No full text
    Autosomal dominant congenital stationary night blindness (adCSNB) is caused by mutations in three genes of the rod phototransduction cascade, rhodopsin (RHO), transducin α-subunit (GNAT1), and cGMP phosphodiesterase type 6 β-subunit (PDE6B). In most cases, the constitutive activation of the phototransduction cascade is a prerequisite to cause adCSNB. The unique adCSNB-associated PDE6B mutation found in the Rambusch pedigree, the substitution p.His258Asn, leads to rod photoreceptors desensitization. Here, we report a three-generation French family with adCSNB harboring a novel PDE6B mutation, the duplication, c.928-9_940dup resulting in a tyrosine to cysteine substitution at codon 314, a frameshift, and a premature termination (p.Tyr314Cysfs*50). To understand the mechanism of the PDE6β1-314fs*50 mutant, we examined the properties of its PDE6-specific portion, PDE6β1-313. We found that PDE6β1-313 maintains the ability to bind noncatalytic cGMP and the inhibitory γ-subunit (Pγ), and interferes with the inhibition of normal PDE6αβ catalytic subunits by Pγ. Moreover, both truncated forms of the PDE6β protein, PDE6β1-313 and PDE6β1-314fs*50 expressed in rods of transgenic X. laevis are targeted to the phototransduction compartment. We hypothesize that in affected family members the p.Tyr314Cysfs*50 change results in the production of the truncated protein, which binds Pγ and causes constitutive activation of the phototransduction thus leading to the absence of rod adaptation

    Novel KCNV2 mutations in cone dystrophy with supernormal rod electroretinogram.

    No full text
    International audiencePURPOSE: To describe patients with cone dystrophy and supernormal rod electroretinogram (ERG) and search for mutations in the recently described KCNV2 gene. DESIGN: Clinical and molecular study. METHODS: Patients from three families originating from France, Morocco, and Algeria had standard ophthalmologic examination and color vision analysis, Goldmann perimetry, International Society for Clinical Electrophysiology of Vision (ISCEV) protocol in accordance with ERG testing, autofluorescence evaluation, and optical coherence tomography 3 scanning. The two coding exons of KCNV2 were polymerase chain reaction amplified and sequenced. RESULTS: All patients had the characteristic features of supernormal, delayed rod ERG responses at the highest levels of stimulation and markedly reduced cone responses. In the French family, two affected sisters were compound heterozygotes for the recurrent c.1381G>A (Gly461Arg) mutation and for a novel c.442G>T (Glu148Stop) mutation. In the Moroccan family, affected members were homozygotes for the novel c.1404delC mutation (His468fsX503) and in the Algerian family, the proband was homozygote for the novel c.1001delC mutation (Ala334fsX453). In the three families, parents were unaffected heterozygote carriers. None of the mutations were present in 50 control chromosomes. CONCLUSIONS: The three novel truncative mutations are likely to be null mutations leading to loss of function, with no difference in the phenotype presentation. Amino acid changes are found exclusively in the N-terminal fragment of the protein and in the P-loop, indicating the importance of those regions for the function of the KCNV2 protein
    corecore