232 research outputs found

    Propagation acoustique GHz dans le noyau de cellules biologiques : analogie avec les réseaux fibrés

    Get PDF
    Nous utilisons la technique d'acoustique picoseconde pour sonder les propriétés mécaniques de cellules individuelles. Nous décrivons d'abord l'application à la paroi de cellules végétales dont la structure bien documentée nous sert de modèle pour comprendre la propagation acoustique GHz dans les réseaux biologiques fibreux. La comparaison avec un modèle d'homogénéisation révèle l'influence des liaisons d'hémicellulose, conduisant à un comportement iso-déformation où le réseau élastique de fibres de cellulose domine la réponse acoustique GHz. Nous étudions ensuite des cellules animales, et nous analysons les résultats par analogie avec ceux obtenus dans les cellules végétales. Un comportement iso-déformation est également identifié, cette fois-ci attribué à la présence de friction entre le réseau de fibres de chromatine et le liquide intra-nucléaire. Ces résultats offrent une meilleure compréhension des propriétés mécaniques du noyau, et permettront d'étudier la dynamique du réseau de chromatine pendant des processus cellulaires tels que la différentiation ou la morphogénèse

    Beam distortion detection and deflectometry measurements of gigahertz surface acoustic waves

    Get PDF
    Gigahertz acoustic waves propagating on the surface of a metal halfspace are detected using different all-optical detection schemes, namely, deflectometry and beam distortion detection techniques. Both techniques are implemented by slightly modifying a conventional reflectometric setup. They are then based on the measurement of the reflectivity change but unlike reflectometric measurements, they give access to the sample surface displacement. A semi-analytical model, taking into account optical, thermal, and mechanical processes responsible for acoustic waves generation, allows analyzing the physical content of the detected waveforms

    We urge WHO to act on cytomegalovirus retinitis

    Get PDF

    Inflammatory Multiple-Sclerosis Plaques Generate Characteristic Metabolic Profiles in Cerebrospinal Fluid

    Get PDF
    International audienceBackgroundMultiple sclerosis (MS), an inflammatory disease of the central nervous system, manifests itself in numerous forms and stages. A number of brain metabolic alterations have been reported for MS patients vs. control subjects. However, metabolite profiles of cerebrospinal fluid (CSF) are not consistent among the published MS studies, most probably due to variations in the patient cohorts studied. We undertook the first investigation of highly homogeneous MS patient cohorts to determine characteristic effects of inflammatory MS plaques on the CSF metabolome, including only patients with clinically isolated syndrome (CIS) with or without inflammatory brain plaques, and controls.Methodology/Principal FindingsCSF obtained by lumbar puncture was analyzed by proton magnetic resonance spectroscopy. 27 metabolites were quantified. Differences between groups of control subjects (n = 10), CIS patients with (n = 21) and without (n = 12) inflammatory plaques were evaluated by univariate statistics and principal component analysis (PCA). Seven metabolites showed statistically significant inter-group differences (p<0.05). Interestingly, a significant increase in β-hydroxyisobutyrate (BHIB) was detected in CIS with vs. without active plaques, but not when comparing either CIS group with control subjects. Moreover, a significant correlation was found, for the first time, between CSF lactate concentration and the number of inflammatory MS brain plaques. In contrast, fructose concentrations were equally enhanced in CIS with or without active plaques. PCA based on all 27 metabolites yielded group-specific clusters.Conclusions/SignificanceCSF metabolic profiles suggest a close link between MS plaque activity in CIS patients on the one hand and organic-acid metabolism on the other. Our detection of increased BHIB levels points to a hitherto unsuspected role for this compound in MS with active plaques, and serves as a basis for further investigation. The metabolic effects described in our study are crucial elements in the explanation of biochemical mechanisms involved in specific MS manifestations

    Prevalence of Grey Matter Pathology in Early Multiple Sclerosis Assessed by Magnetization Transfer Ratio Imaging

    Get PDF
    The aim of the study was to assess the prevalence, the distribution and the impact on disability of grey matter (GM) pathology in early multiple sclerosis. Eighty-eight patients with a clinically isolated syndrome with a high risk developing multiple sclerosis were included in the study. Forty-four healthy controls constituted the normative population. An optimized statistical mapping analysis was performed to compare each subject's GM Magnetization Transfer Ratio (MTR) imaging maps with those of the whole group of controls. The statistical threshold of significant GM MTR decrease was determined as the maximum p value (p<0.05 FDR) for which no significant cluster survived when comparing each control to the whole control population. Using this threshold, 51% of patients showed GM abnormalities compared to controls. Locally, 37% of patients presented abnormalities inside the limbic cortex, 34% in the temporal cortex, 32% in the deep grey matter, 30% in the cerebellum, 30% in the frontal cortex, 26% in the occipital cortex and 19% in the parietal cortex. Stepwise regression analysis evidenced significant association (p = 0.002) between EDSS and both GM pathology (p = 0.028) and T2 white matter lesions load (p = 0.019). In the present study, we evidenced that individual analysis of GM MTR map allowed demonstrating that GM pathology is highly heterogeneous across patients at the early stage of MS and partly underlies irreversible disability

    Metabolic counterparts of sodium accumulation in multiple sclerosis: A whole brain 23Na-MRI and fast 1H-MRSI study

    Get PDF
    Increase of brain total sodium concentrations (TSC) is present in multiple sclerosis (MS), but its pathological involvement has not been assessed yet. To determine in vivo the metabolic counterpart of brain sodium accumulation. Whole brain Na-MR imaging and 3D- H-EPSI data were collected in 21 relapsing-remitting multiple sclerosis (RRMS) patients and 20 volunteers. Metabolites and sodium levels were extracted from several regions of grey matter (GM), normal-appearing white matter (NAWM) and white matter (WM) T lesions. Metabolic and ionic levels expressed as Z-scores have been averaged over the different compartments and used to explain sodium accumulations through stepwise regression models. MS patients showed significant Na accumulations with lower choline and glutamate-glutamine (Glx) levels in GM; Na accumulations with lower N-acetyl aspartate (NAA), Glx levels and higher Myo-Inositol (m-Ins) in NAWM; and higher Na, m-Ins levels with lower NAA in WM T lesions. Regression models showed associations of TSC increase with reduced NAA in GM, NAWM and T lesions, as well as higher total-creatine, and smaller decrease of m-Ins in T lesions. GM Glx levels were associated with clinical scores. Increase of TSC in RRMS is mainly related to neuronal mitochondrial dysfunction while dysfunction of neuro-glial interactions within GM is linked to clinical scores

    Delayed access to conscious processing in multiple sclerosis: reduced cortical activation and impaired structural connectivity

    Get PDF
    Although multiple sclerosis (MS) is frequently accompanied by visuo-cognitive impairment, especially functional brain mechanisms underlying this impairment are still not well understood. Consequently, we used a functional MRI (fMRI) backward masking task to study visual information processing stratifying unconscious and conscious in MS. Specifically, 30 persons with MS (pwMS) and 34 healthy controls (HC) were shown target stimuli followed by a mask presented 8-150 ms later and had to compare the target to a reference stimulus. Retinal integrity (via optical coherence tomography), optic tract integrity (visual evoked potential; VEP) and whole brain structural connectivity (probabilistic tractography) were assessed as complementary structural brain integrity markers. On a psychophysical level, pwMS reached conscious access later than HC (50 vs. 16 ms, p < .001). The delay increased with disease duration (p < .001, β = .37) and disability (p < .001, β = .24), but did not correlate with conscious information processing speed (Symbol digit modality test, β = .07, p = .817). No association was found for VEP and retinal integrity markers. Moreover, pwMS were characterized by decreased brain activation during unconscious processing compared with HC. No group differences were found during conscious processing. Finally, a complementary structural brain integrity analysis showed that a reduced fractional anisotropy in corpus callosum and an impaired connection between right insula and primary visual areas was related to delayed conscious access in pwMS. Our study revealed slowed conscious access to visual stimulus material in MS and a complex pattern of functional and structural alterations coupled to unconscious processing of/delayed conscious access to visual stimulus material in MS

    Evaluation of treatment response in adults with relapsing MOG-Ab-associated disease

    Get PDF
    Background: Myelin oligodendrocyte glycoprotein antibodies (MOG-Ab) are related to several acquired demyelinating syndromes in adults, but the therapeutic approach is currently unclear. We aimed to describe the response to different therapeutic strategies in adult patients with relapsing MOG-Ab-associated disease. Methods: This is a retrospective study conducted in France and Spain including 125 relapsing MOG-Ab patients aged ≥ 18 years. First, we performed a survival analysis to investigate the relapse risk between treated and non-treated patients, performing a propensity score method based on the inverse probability of treatment weighting. Second, we assessed the annualised relapse rates (ARR), Expanded Disability Status Scale (EDSS) and visual acuity pre-treatment and on/end-treatment. Results: Median age at onset was 34.1 years (range 18.0-67.1), the female to male ratio was 1.2:1, and 96% were Caucasian. At 5 years, 84% (95% confidence interval [CI], 77.1-89.8) patients relapsed. At the last follow-up, 66 (52.8%) received maintenance therapy. Patients initiating immunosuppressants (azathioprine, mycophenolate mophetil [MMF], rituximab) were at lower risk of new relapse in comparison to non-treated patients (HR, 0.41; 95CI%, 0.20-0.82; p = 0.011). Mean ARR (standard deviation) was reduced from 1.05(1.20) to 0.43(0.79) with azathioprine (n = 11; p = 0.041), from 1.20(1.11) to 0.23(0.60) with MMF (n = 11; p = 0.033), and from 1.08(0.98) to 0.43(0.89) with rituximab (n = 26; p = 0.012). Other immunosuppressants (methotrexate/mitoxantrone/cyclophosphamide; n = 5), or multiple sclerosis disease-modifying drugs (MS-DMD; n = 9), were not associated with significantly reduced ARR. Higher rates of freedom of EDSS progression were observed with azathioprine, MMF or rituximab. Conclusion: In adults with relapsing MOG-Ab-associated disease, immunosuppressant therapy (azathioprine, MMF and rituximab) is associated with reduced risk of relapse and better disability outcomes. Such an effect was not found in the few patients treated with MS-DMD

    Picosecond ultrasonics with a free-running dual-comb laser

    Get PDF
    We present a free-running 80-MHz dual-comb polarization-multiplexed solid-state laser which delivers 1.8 W of average power with 110-fs pulse duration per comb. With a high-sensitivity pump-probe setup, we apply this free-running dual-comb laser to picosecond ultrasonic measurements. The ultrasonic signatures in a semiconductor multi-quantum-well structure originating from the quantum wells and superlattice regions are revealed and discussed. We further demonstrate ultrasonic measurements on a thin-film metalized sample and compare these measurements to ones obtained with a pair of locked femtosecond lasers. Our data show that a free-running dual-comb laser is well-suited for picosecond ultrasonic measurements and thus it offers a significant reduction in complexity and cost for this widely adopted non-destructive testing techniqu

    Interleukin-6 receptor blockade in treatment-refractory MOG-IgG–associated disease and neuromyelitis optica spectrum disorders

    Get PDF
    BACKGROUND AND OBJECTIVES: To evaluate the long-term safety and efficacy of tocilizumab (TCZ), a humanized anti–interleukin-6 receptor antibody in myelin oligodendrocyte glycoprotein–IgG–associated disease (MOGAD) and neuromyelitis optica spectrum disorders (NMOSD). METHODS: Annualized relapse rate (ARR), Expanded Disability Status Scale score, MRI, autoantibody titers, pain, and adverse events were retrospectively evaluated in 57 patients with MOGAD (n = 14), aquaporin-4 (AQP4)-IgG seropositive (n = 36), and seronegative NMOSD (n = 7; 12%), switched to TCZ from previous immunotherapies, particularly rituximab. RESULTS: Patients received TCZ for 23.8 months (median; interquartile range 13.0–51.1 months), with an IV dose of 8.0 mg/kg (median; range 6–12 mg/kg) every 31.6 days (mean; range 26–44 days). For MOGAD, the median ARR decreased from 1.75 (range 0.5–5) to 0 (range 0–0.9; p = 0.0011) under TCZ. A similar effect was seen for AQP4-IgG+ (ARR reduction from 1.5 [range 0–5] to 0 [range 0–4.2]; p < 0.001) and for seronegative NMOSD (from 3.0 [range 1.0–3.0] to 0.2 [range 0–2.0]; p = 0.031). During TCZ, 60% of all patients were relapse free (79% for MOGAD, 56% for AQP4-IgG+, and 43% for seronegative NMOSD). Disability follow-up indicated stabilization. MRI inflammatory activity decreased in MOGAD (p = 0.04; for the brain) and in AQP4-IgG+ NMOSD (p < 0.001; for the spinal cord). Chronic pain was unchanged. Regarding only patients treated with TCZ for at least 12 months (n = 44), ARR reductions were confirmed, including the subgroups of MOGAD (n = 11) and AQP4-IgG+ patients (n = 28). Similarly, in the group of patients treated with TCZ for at least 12 months, 59% of them were relapse free, with 73% for MOGAD, 57% for AQP4-IgG+, and 40% for patients with seronegative NMOSD. No severe or unexpected safety signals were observed. Add-on therapy showed no advantage compared with TCZ monotherapy. DISCUSSION: This study provides Class III evidence that long-term TCZ therapy is safe and reduces relapse probability in MOGAD and AQP4-IgG+ NMOSD
    corecore