57 research outputs found

    The kinematic Sunyaev Zeldovich effect and transverse cluster velocities

    Full text link
    The polarization of the CMBR scattered by galaxy clusters in the kinematic Sunyaev Zeldovich effect depends on the transverse velocity of the cluster. This polarizing effect is proportional to the transverse velocity squared, and so weaker that the change in intensity due to the radial motion in the kinematic effect. The value given by Sunyaev and Zeldovich, and which is frequently cited, underestimates the polarizing effect by a factor of ten. We show furthermore that the polarization has a strong frequency dependence. This means that the polarization should be detectable with the new generation of CMBR probes, at least for some clusters. Thus this effect offers, almost uniquely, a method of obtaining the vectorial velocity of clusters.Comment: Submitted to MNRAS letter. 5 pages using mnras file style. email: [email protected]

    The use of light polarization for weak-lensing inversions

    Get PDF
    The measurement of the integrated optical polarization of weakly gravitationally lensed galaxies can provide considerable constraints on lens models. The method outlined depends on fact that the orientation of the direction of optical polarization is not affected by weak gravitational lensing. The angle between the semi-major axis of the imaged galaxy and the direction of integrated optical polarization thus informs one of the distortion produced by the gravitational lensing. Although the method depends on the polarimetric measurement of faint galaxies, large telescopes and improved techniques should make such measurements possible in the near future.Comment: 13 pages, 11 figures, uses mnras style file. Accepted for publication in MNRA

    Radiative, magnetic and numerical feedbacks on small-scale fragmentation

    Full text link
    Radiative feedback and magnetic field are understood to have a strong impact on the protostellar collapse. We present high resolution numerical calculations of the collapse of a 1 solar mass dense core in solid body rotation, including both radiative transfer and magnetic field. Using typical parameters for low-mass cores, we study thoroughly the effect of radiative transfer and magnetic field on the first core formation and fragmentation. We show that including the two aforementioned physical processes does not correspond to the simple picture of adding them separately. The interplay between the two is extremely strong, via the magnetic braking and the radiation from the accretion shock.Comment: 4 pages, 2 figures ; to appear in "IAU Symposium 270: Computational Star formation", Eds. J. Alves, B. Elmegreen, J. Girart, V. Trimbl

    A Godunov-Type Solver for the Numerical Approximation of Gravitational Flows

    Get PDF
    International audienceWe present a new numerical method to approximate the solutions of an Euler-Poisson model, which is inherent to astrophysical flows where gravity plays an important role. We propose a discretization of gravity which ensures adequate coupling of the Poisson and Euler equations, paying particular attention to the gravity source term involved in the latter equations. In order to approximate this source term, its discretization is introduced into the approximate Riemann solver used for the Euler equations. A relaxation scheme is involved and its robustness is established. The method has been implemented in the software HERACLES and several numerical experiments involving gravitational flows for astrophysics highlight the scheme

    Radiative, magnetic and numerical feedbacks on small-scale fragmentation

    Get PDF
    Radiative feedback and magnetic field are understood to have a strong impact on the protostellar collapse. We present high resolution numerical calculations of the collapse of a 1 M⊙ dense core in solid body rotation, including both radiative transfer and magnetic field. Using typical parameters for low-mass cores, we study thoroughly the effect of radiative transfer and magnetic field on the first core formation and fragmentation. We show that including the two aforementioned physical processes does not correspond to the simple picture of adding them separately. The interplay between the two is extremely strong, via the magnetic braking and the radiation from the accretion shoc

    Measure of precursor electron density profiles of laser launched radiative shocks

    Get PDF
    We have studied the dynamics of strong radiative shocks generated with the high-energy subnanosecond iodine laser at Prague Asterix Laser System facilityComment: with small correction in Fig.1

    Experimental study of radiative shocks at PALS facility

    Full text link
    We report on the investigation of strong radiative shocks generated with the high energy, sub-nanosecond iodine laser at PALS. These shock waves are characterized by a developed radiative precursor and their dynamics is analyzed over long time scales (~50 ns), approaching a quasi-stationary limit. We present the first preliminary results on the rear side XUV spectroscopy. These studies are relevant to the understanding of the spectroscopic signatures of accretion shocks in Classical T Tauri Stars.Comment: 21 pages, 1 table, 7 figure
    • …
    corecore