26 research outputs found

    Discrete Breathers in Two-Dimensional Anisotropic Nonlinear Schrodinger lattices

    Full text link
    We study the structure and stability of discrete breathers (both pinned and mobile) in two-dimensional nonlinear anisotropic Schrodinger lattices. Starting from a set of identical one-dimensional systems we develop the continuation of the localized pulses from the weakly coupled regime (strongly anisotropic) to the homogeneous one (isotropic). Mobile discrete breathers are seen to be a superposition of a localized mobile core and an extended background of two-dimensional nonlinear plane waves. This structure is in agreement with previous results on onedimensional breather mobility. The study of the stability of both pinned and mobile solutions is performed using standard Floquet analysis. Regimes of quasi-collapse are found for both types of solutions, while another kind of instability (responsible for the discrete breather fission) is found for mobile solutions. The development of such instabilities is studied, examining typical trajectories on the unstable nonlinear manifold.Comment: 13 pages, 9 figure

    Quantum phase transition in the Frenkel-Kontorova chain: from pinned instanton glass to sliding phonon gas

    Full text link
    We study analytically and numerically the one-dimensional quantum Frenkel-Kontorova chain in the regime when the classical model is located in the pinned phase characterized by the gaped phonon excitations and devil's staircase. By extensive quantum Monte Carlo simulations we show that for the effective Planck constant \hbar smaller than the critical value c\hbar_c the quantum chain is in the pinned instanton glass phase. In this phase the elementary excitations have two branches: phonons, separated from zero energy by a finite gap, and instantons which have an exponentially small excitation energy. At =c\hbar=\hbar_c the quantum phase transition takes place and for >c\hbar>\hbar_c the pinned instanton glass is transformed into the sliding phonon gas with gapless phonon excitations. This transition is accompanied by the divergence of the spatial correlation length and appearence of sliding modes at >c\hbar>\hbar_c.Comment: revtex 16 pages, 18 figure

    Mobile Localization in nonlinear Schrodinger lattices

    Full text link
    Using continuation methods from the integrable Ablowitz-Ladik lattice, we have studied the structure of numerically exact mobile discrete breathers in the standard Discrete Nonlinear Schrodinger equation. We show that, away from that integrable limit, the mobile pulse is dressed by a background of resonant plane waves with wavevectors given by a certain selection rule. This background is seen to be essential for supporting mobile localization in the absence of integrability. We show how the variations of the localized pulse energy during its motion are balanced by the interaction with this background, allowing the localization mobility along the lattice.Comment: 10 pages, 11 figure

    Observation of breather-like states in a single Josephson cell

    Full text link
    We present experimental observation of broken-symmetry states in a superconducting loop with three Josephson junctions. These states are generic for discrete breathers in Josephson ladders. The existence region of the breather-like states is found to be in good accordance with the theoretical expectations. We observed three different resonant states in the current-voltage characteristics of the broken-symmetry state, as predicted by theory. The experimental dependence of the resonances on the external magnetic field is studied in detail.Comment: 7 pages, 8 figure

    Tunneling of quantum rotobreathers

    Full text link
    We analyze the quantum properties of a system consisting of two nonlinearly coupled pendula. This non-integrable system exhibits two different symmetries: a permutational symmetry (permutation of the pendula) and another one related to the reversal of the total momentum of the system. Each of these symmetries is responsible for the existence of two kinds of quasi-degenerated states. At sufficiently high energy, pairs of symmetry-related states glue together to form quadruplets. We show that, starting from the anti-continuous limit, particular quadruplets allow us to construct quantum states whose properties are very similar to those of classical rotobreathers. By diagonalizing numerically the quantum Hamiltonian, we investigate their properties and show that such states are able to store the main part of the total energy on one of the pendula. Contrary to the classical situation, the coupling between pendula necessarily introduces a periodic exchange of energy between them with a frequency which is proportional to the energy splitting between quasi-degenerated states related to the permutation symmetry. This splitting may remain very small as the coupling strength increases and is a decreasing function of the pair energy. The energy may be therefore stored in one pendulum during a time period very long as compared to the inverse of the internal rotobreather frequency.Comment: 20 pages, 11 figures, REVTeX4 styl

    Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: The Manitoba Bone Density Program.

    No full text
    INTRODUCTION: One quarter of osteoporotic fractures occur in men. TBS, a gray-level measurement derived from lumbar spine DXA image texture, is related to microarchitecture and fracture risk independently of BMD. Previous studies reported the ability of spine TBS to predict osteoporotic fractures in women. Our aim was to evaluate the ability of TBS to predict clinical osteoporotic fractures in men. METHODS: 3620 men aged ≥50 (mean 67.6years) at the time of baseline DXA (femoral neck, spine) were identified from a database (Province of Manitoba, Canada). Health service records were assessed for the presence of non-traumatic osteoporotic fracture after BMD testing. Lumbar spine TBS was derived from spine DXA blinded to clinical parameters and outcomes. We used Cox proportional hazard regression to analyze time to first fracture adjusted for clinical risk factors (FRAX without BMD), osteoporosis treatment and BMD (hip or spine). RESULTS: Mean followup was 4.5years. 183 (5.1%) men sustain major osteoporotic fractures (MOF), 91 (2.5%) clinical vertebral fractures (CVF), and 46 (1.3%) hip fractures (HF). Correlation between spine BMD and spine TBS was modest (r=0.31), less than correlation between spine and hip BMD (r=0.63). Significantly lower spine TBS were found in fracture versus non-fracture men for MOF (p<0.001), HF (p<0.001) and CVF (p=0.003). Area under the receiver operating characteristic curve (AUC) for incident fracture discrimination with TBS was significantly better than chance (MOF AUC=0.59, p<0.001; HF AUC=0.67, p<0.001; CVF AUC=0.57, p=0.032). TBS predicted MOF and HF (but not CVF) in models adjusted for FRAX without BMD and osteoporosis treatment. TBS remained a predictor of HF (but not MOF) after further adjustment for hip BMD or spine BMD. CONCLUSION: We observed that spine TBS predicted MOF and HF independently of the clinical FRAX score, HF independently of FRAX and BMD in men. Studies with more incident fractures are needed to confirm these findings
    corecore