6,046 research outputs found
Constructing and exploring wells of energy landscapes
Landscape paradigm is ubiquitous in physics and other natural sciences, but
it has to be supplemented with both quantitative and qualitatively meaningful
tools for analyzing the topography of a given landscape. We here consider
dynamic explorations of the relief and introduce as basic topographic features
``wells of duration and altitude ''. We determine an intrinsic
exploration mechanism governing the evolutions from an initial state in the
well up to its rim in a prescribed time, whose finite-difference approximations
on finite grids yield a constructive algorithm for determining the wells. Our
main results are thus (i) a quantitative characterization of landscape
topography rooted in a dynamic exploration of the landscape, (ii) an
alternative to stochastic gradient dynamics for performing such an exploration,
(iii) a constructive access to the wells and (iv) the determination of some
bare dynamic features inherent to the landscape. The mathematical tools used
here are not familiar in physics: They come from set-valued analysis
(differential calculus of set-valued maps and differential inclusions) and
viability theory (capture basins of targets under evolutionary systems) which
have been developed during the last two decades; we therefore propose a minimal
appendix exposing them at the end of this paper to bridge the possible gap.Comment: 28 pages, submitted to J. Math. Phys -
Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks
We present a lattice calculation of the hadronic vacuum polarization and the
lowest-order hadronic contribution to the muon anomalous magnetic moment, a_\mu
= (g-2)/2, using 2+1 flavors of improved staggered fermions. A precise fit to
the low-q^2 region of the vacuum polarization is necessary to accurately
extract the muon g-2. To obtain this fit, we use staggered chiral perturbation
theory, including the vector particles as resonances, and compare these to
polynomial fits to the lattice data. We discuss the fit results and associated
systematic uncertainties, paying particular attention to the relative
contributions of the pions and vector mesons. Using a single lattice spacing
ensemble (a=0.086 fm), light quark masses as small as roughly one-tenth the
strange quark mass, and volumes as large as (3.4 fm)^3, we find a_\mu^{HLO} =
(713 \pm 15) \times 10^{-10} and (748 \pm 21) \times 10^{-10} where the error
is statistical only and the two values correspond to linear and quadratic
extrapolations in the light quark mass, respectively. Considering systematic
uncertainties not eliminated in this study, we view this as agreement with the
current best calculations using the experimental cross section for e^+e^-
annihilation to hadrons, 692.4 (5.9) (2.4)\times 10^{-10}, and including the
experimental decay rate of the tau lepton to hadrons, 711.0 (5.0)
(0.8)(2.8)\times 10^{-10}. We discuss several ways to improve the current
lattice calculation.Comment: 44 pages, 4 tables, 17 figures, more discussion on matching the chpt
calculation to lattice calculation, typos corrected, refs added, version to
appear in PR
2+1 flavor simulations of QCD with improved staggered quarks
The MILC collaboration has been performing realistic simulations of full QCD
with 2+1 flavors of improved staggered quarks. Our simulations allow for
controlled continuum and chiral extrapolations. I present results for the light
pseudoscalar sector: masses and decay constants, quark masses and
Gasser-Leutwyler low-energy constants. In addition I will present some results
for heavy-light mesons, decay constants and semileptonic form factors, obtained
in collaboration with the HPQCD and Fermilab lattice collaborations. Such
calculations will help in the extraction of CKM matrix elements from
experimental measurements.Comment: To appear in the proceedings of QNP06, IVth International Conference
on Quarks and Nuclear Physics, Madrid, June 200
Leptonic decay constants f_Ds and f_D in three flavor lattice QCD
We determine the leptonic decay constants in three flavor unquenched lattice
QCD. We use O(a^2)-improved staggered light quarks and O(a)-improved charm
quarks in the Fermilab heavy quark formalism. Our preliminary results, based
upon an analysis at a single lattice spacing, are f_Ds = 263(+5-9)(+/-24) MeV
and f_D = 225(+11-13)(+/-21) MeV. In each case, the first reported error is
statistical while the is the combined systematic uncertainty.Comment: Talk presented at Lattice2004(heavy), Fermilab, June 21-26, 2004. 3
pages, 2 figure
Fixed points of dynamic processes of set-valued F-contractions and application to functional equations
The article is a continuation of the investigations concerning F-contractions which have been recently introduced in [Wardowski in Fixed Point Theory Appl. 2012:94,2012]. The authors extend the concept of F-contractive mappings to the case of nonlinear F-contractions and prove a fixed point theorem via the dynamic processes. The paper includes a non-trivial example which shows the motivation for such investigations. The work is summarized by the application of the introduced nonlinear F-contractions to functional equations
K to pi and K to 0 in 2+1 Flavor Partially Quenched Chiral Perturbation Theory
We calculate results for K to pi and K to 0 matrix elements to
next-to-leading order in 2+1 flavor partially quenched chiral perturbation
theory. Results are presented for both the Delta I=1/2 and 3/2 channels, for
chiral operators corresponding to current-current, gluonic penguin, and
electroweak penguin 4-quark operators. These formulas are useful for studying
the chiral behavior of currently available 2+1 flavor lattice QCD results, from
which the low energy constants of the chiral effective theory can be
determined. The low energy constants of these matrix elements are necessary for
an understanding of the Delta I=1/2 rule, and for calculations of
epsilon'/epsilon using current lattice QCD simulations.Comment: 43 pages, 2 figures, uses RevTeX, added and updated reference
Order of the Chiral and Continuum Limits in Staggered Chiral Perturbation Theory
Durr and Hoelbling recently observed that the continuum and chiral limits do
not commute in the two dimensional, one flavor, Schwinger model with staggered
fermions. I point out that such lack of commutativity can also be seen in
four-dimensional staggered chiral perturbation theory (SChPT) in quenched or
partially quenched quantities constructed to be particularly sensitive to the
chiral limit. Although the physics involved in the SChPT examples is quite
different from that in the Schwinger model, neither singularity seems to be
connected to the trick of taking the nth root of the fermion determinant to
remove unwanted degrees of freedom ("tastes"). Further, I argue that the
singularities in SChPT are absent in most commonly-computed quantities in the
unquenched (full) QCD case and do not imply any unexpected systematic errors in
recent MILC calculations with staggered fermions.Comment: 14 pages, 1 figure. v3: Spurious symbol, introduced by conflicting
tex macros, removed. Clarification of discussion in several place
Research of metal solidification in zero-g state
An experiment test apparatus that allows metal melting and resolidification in the three seconds available during free fall in a drop tower was built and tested in the tower. Droplets (approximately 0.05 cm) of pure nickel and 1090 steel were prepared in this fashion. The apparatus, including instrumentation, is described. As part of the instrumentation, a method for measuring temperature-time histories of the free floating metal droplets was developed. Finally, a metallurgical analysis of the specimens prepared in the apparatus is presented
- …