312 research outputs found

    Tracer Gas Technique Versus a Control Box Method for Estimating Direct Capture Efficiency of Exhaust Systems

    Get PDF

    Synthesis of Polyhydroxylated Pyrano-Pyrrole Derivatives from Carbohydrate Precursors

    Get PDF
    The efficient synthesis of novel polyhydroxy‐tetrahydropyrano‐pyrroles from acetylenic carbohydrate precursors in three to four steps is described. The methodology involves, as key steps, the ring contraction of pyridazine intermediates obtained by an inverse‐demand Diels–Alder reaction and subsequent intramolecular lactonization

    Interferon ÎČ-1a in relapsing multiple sclerosis: four-year extension of the European IFNÎČ-1a Dose-C omparison Study

    Get PDF
    Background: Multiple sclerosis (MS) is a chronic disease requiring long-term monitoring of treatment. Objective: To assess the four-year clinical efficacy of intramuscular (IM) IFNb-1a in patients with relapsing MS from the European IFNb-1a Dose-C omparison Study. Methods: Patients who completed 36 months of treatment (Part 1) of the European IFNb-1a Dose-C omparison Study were given the option to continue double-blind treatment with IFNb-1a 30 mcg or 60 mcg IM once weekly (Part 2). Analyses of 48-month data were performed on sustained disability progression, relapses, and neutralizing antibody (NA b) formation. Results: O f 608/802 subjects who completed 36 months of treatment, 493 subjects continued treatment and 446 completed 48 months of treatment and follow-up. IFNb-1a 30 mcg and 60 mcg IM once weekly were equally effective for up to 48 months. There were no significant differences between doses over 48 months on any of the clinical endpoints, including rate of disability progression, cumulative percentage of patients who progressed (48 and 43, respectively), and annual relapse rates; relapses tended to decrease over 48 months. The incidence of patients who were positive for NAbs at any time during the study was low in both treatment groups. Conclusion: C ompared with 60-mcg IM IFNb-1a once weekly, a dose of 30 mcg IM IFNb-1a once weekly maintains the same clinical efficacy over four years

    Higher risk for acute childhood lymphoblastic leukaemia in Swedish population centres 1973-94

    Get PDF
    A population-based sample of acute childhood leukaemia cases in Sweden 1973–94 was analysed by a geographical information system (GIS) for spatial leukaemia distribution in relation to population density. The annual incidence rate for acute lymphoblastic leukaemia (ALL) was 3.6, and for acute non-lymphoblastic leukaemia (ANLL) 0.7, cases per 100 000 children. Incidence rates in population centres, constituting 1.3% of Sweden's land area and approximately 80% of the population, compared with the rest of Sweden showed a statistically significant excess of ALL [odds ratio (OR) 1.68; 95% confidence interval (CI) 1.44–1.95], but not ANLL (OR 1.13; 95% CI 0.98–1.32). An increasing trend, however not statistically significant, was found for ALL incidence with both increasing population density in parishes and increasing degree of urbanity in municipalities. These findings support the theories that some environmental factors associated with high population density, such as infectious agents, may be of aetiological importance for childhood acute lymphoblastic leukaemia. © 1999 Cancer Research Campaig

    Is there a role for menopausal hormone therapy in the management of postmenopausal osteoporosis?

    Get PDF
    We provide an evidence base and guidance for the use of menopausal hormone therapy (MHT) for the maintenance of skeletal health and prevention of future fractures in recently menopausal women. Despite controversy over associated side effects, which has limited its use in recent decades, the potential role for MHT soon after menopause in the management of postmenopausal osteoporosis is increasingly recognized. We present a narrative review of the benefits versus risks of using MHT in the management of postmenopausal osteoporosis. Current literature suggests robust anti-fracture efficacy of MHT in patients unselected for low BMD, regardless of concomitant use with progestogens, but with limited evidence of persisting skeletal benefits following cessation of therapy. Side effects include cardiovascular events, thromboembolic disease, stroke and breast cancer, but the benefit-risk profile differs according to the use of opposed versus unopposed oestrogens, type of oestrogen/progestogen, dose and route of delivery and, for cardiovascular events, timing of MHT use. Overall, the benefit-risk profile supports MHT treatment in women who have recently (< 10 years) become menopausal, who have menopausal symptoms and who are less than 60 years old, with a low baseline risk for adverse events. MHT should be considered as an option for the maintenance of skeletal health in women, specifically as an additional benefit in the context of treatment of menopausal symptoms, when commenced at the menopause, or shortly thereafter, in the context of a personalized benefit-risk evaluation

    International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines

    Get PDF
    The human ageing process is universal, ubiquitous and inevitable. Every physiological function is being continuously diminished. There is a range between two distinct phenotypes of ageing, shaped by patterns of living - experiences and behaviours, and in particular by the presence or absence of physical activity (PA) and structured exercise (i.e., a sedentary lifestyle). Ageing and a sedentary lifestyle are associated with declines in muscle function and cardiorespiratory fitness, resulting in an impaired capacity to perform daily activities and maintain independent functioning. However, in the presence of adequate exercise/PA these changes in muscular and aerobic capacity with age are substantially attenuated. Additionally, both structured exercise and overall PA play important roles as preventive strategies for many chronic diseases, including cardiovascular disease, stroke, diabetes, osteoporosis, and obesity; improvement of mobility, mental health, and quality of life; and reduction in mortality, among other benefits. Notably, exercise intervention programmes improve the hallmarks of frailty (low body mass, strength, mobility, PA level, energy) and cognition, thus optimising functional capacity during ageing. In these pathological conditions exercise is used as a therapeutic agent and follows the precepts of identifying the cause of a disease and then using an agent in an evidence-based dose to eliminate or moderate the disease. Prescription of PA/structured exercise should therefore be based on the intended outcome (e.g., primary prevention, improvement in fitness or functional status or disease treatment), and individualised, adjusted and controlled like any other medical treatment. In addition, in line with other therapeutic agents, exercise shows a dose-response effect and can be individualised using different modalities, volumes and/or intensities as appropriate to the health state or medical condition. Importantly, exercise therapy is often directed at several physiological systems simultaneously, rather than targeted to a single outcome as is generally the case with pharmacological approaches to disease management. There are diseases for which exercise is an alternative to pharmacological treatment (such as depression), thus contributing to the goal of deprescribing of potentially inappropriate medications (PIMS). There are other conditions where no effective drug therapy is currently available (such as sarcopenia or dementia), where it may serve a primary role in prevention and treatment. Therefore, this consensus statement provides an evidence-based rationale for using exercise and PA for health promotion and disease prevention and treatment in older adults. Exercise prescription is discussed in terms of the specific modalities and doses that have been studied in randomised controlled trials for their effectiveness in attenuating physiological changes of ageing, disease prevention, and/or improvement of older adults with chronic disease and disability. Recommendations are proposed to bridge gaps in the current literature and to optimise the use of exercise/PA both as a preventative medicine and as a therapeutic agent

    The impact of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men

    Get PDF
    Abtract Background: The exact impact of ageing on skeletal muscle phenotype and mitochondrial and lipid content remains controversial, probably because physical activity, which greatly influences muscle physiology, is rarely accounted for. The present study was therefore designed to investigate the effects of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, and mitochondrial and intramyocellular lipid content in men. Methods: Recreationally active young adult (20–30 yo; YA); active (ACT) and sedentary (SED) middle-age (50–65 yo; MA-ACT and MA-SED); and older (65 + yo; 65 + ACT and 65 + SED) and pre-frail older (65 + PF) men were recruited. Muscle biopsies from the vastus lateralis were collected to assess, on muscle cross sections, muscle phenotype (using myosin heavy chain isoforms immunolabelling), the fibre type-specific content of mitochondria (by quantifying the succinate dehydrogenase stain intensity), and the fibre type-specific lipid content (by quantifying the Oil Red O stain intensity). Results: Only 65 + SED and 65 + PF displayed significantly lower overall and type IIa fibre sizes vs. YA. 65 + SED displayed a lower type IIa fibre proportion vs. YA. MA-SED and 65 + SED displayed a higher hybrid type IIa/IIx fibre proportion vs. YA. Sedentary and pre-frail, but not active, men displayed lower mitochondrial content irrespective of fibre type vs. YA. 65 + SED, but not 65 + ACT, displayed a higher lipid content in type I fibres vs. YA. Finally, mitochondrial content, but not lipid content, was positively correlated with indices of muscle function, functional capacity, and insulin sensitivity across all subjects. Conclusions: Taken altogether, our results indicate that ageing in sedentary men is associated with (i) complex changes in muscle phenotype preferentially affecting type IIa fibres; (ii) a decline in mitochondrial content affecting all fibre types; and (iii) an increase in lipid content in type I fibres. They also indicate that physical activity partially protects from the effects of ageing on muscle phenotype, mitochondrial content, and lipid accumulation. No skeletal specific muscle phenotype of pre-frailty was observed

    Role of forested land for natural flood management in the UK: A review

    Get PDF
    • 

    corecore