267 research outputs found

    Influence of carrier lifetime on quantum criticality and superconducting Tc of (TMTSF)_2ClO_4

    Full text link
    This work presents and analyzes electrical resistivity data on the organic superconductor (TMTSF)2_2ClO4_4 and their anion substituted alloys (TMTSF)2_2(ClO4_4)1x_{1-x}(ReO4_4)x_x along the least conducting cc^\star axis. Nonmagnetic disorder introduced by finite size domains of anion ordering on non Fermi liquid character of resistivity is investigated near the conditions of quantum criticality. The evolution of the TT-linear resistivity term with anion disorder shows a limited decrease in contrast with the complete suppression of the critical temperature TcT_c as expected for unconventional superconductivity beyond a threshold value of xx. The resulting breakdown of scaling between both quantities is compared to the theoretical predictions of a linearized Boltzmann equation combined to the scaling theory of umklapp scattering in the presence of disorder induced pair-breaking for the carriers.Comment: 13 pages, 8 figure

    Suppression of superconductivity by non-magnetic disorder in the organic superconductor (TMTSF)2(ClO4)(1-x)(ReO4)x

    Full text link
    We present a study of the superconducting properties (Tc and Hc2) in the solid solution (TMTSF)2(ClO4)(1-x)(ReO4)x with a ReO-4 nominal concentration up to x = 6%. The dramatic suppression of Tc when the residual resistivity is increased upon alloying with no modification of the Fermi surface is the signature of non-conventional superconductivity . This behaviour strongly supports p or d wave pairing in quasi one dimensional organic superconductors. The determination of the electron lifetime in the normal state at low temperature confirms that a single particle Drude model is unable to explain the temperature dependence of the conductivity and that a very narrow zero frequency mode must be taken into account for the interpretation of the transport properties.Comment: Received 26 January 2004 / Received in final form 17 June 2004 / Published online 3 August 200

    Two insulating phases in compressed Pr1-xCaxMnO3 thin films

    Full text link
    The temperature dependent resistivity of two Pr1-xCaxMnO3 (x=0.5 and 0.4) thin films grown on LaAlO3 has been studied as a function of hydrostatic pressure (up to 2.5 GPa) and magnetic field (up to 9T). Both samples show a monotonic decrease in the resistivity with an increase in pressure, corresponding to a change of -35% at 2.5 GPa. No pressure induced metal-to-insulator transition was observed in the temperature-dependent resistivity. The non-trivial interaction between high pressure and magnetic field reveals that the effect of pressure cannot be simply rescaled to that of a specific field, as has been reported for the corresponding bulk material. We propose an interpretation of the data based on phase separation, where two different insulating phases coexist: the charge ordered phase, which is sensitive to both magnetic field and pressure, and a second insulating phase that can be tuned by magnetic field. Such a result demonstrates that phase separation can be manipulated in thin films by independent application of magnetic field and/or external pressure.Comment: 9 pages, 3 figuresn submitted to Applied Physics Letter

    Phase diagram of quarter-filled band organic salts, [EDT-TTF-CONMe2]2X, X = AsF6 and Br

    Get PDF
    An investigation of the P/T phase diagram of the quarter-filled organic conductors, [EDT-TTF-CONMe2]2X, is reported on the basis of transport and NMR studies of two members, X=AsF6 and Br of the family. The strongly insulating character of these materials in the low pressure regime has been attributed to a remarkably stable charge ordered state confirmed by 13C NMR and the only existence of 1/4 Umklapp e-e scattering favoring a charge ordering instead of the 1D Mott localization seen in (TM)2X which are quarter-filled compounds with dimerization. A non magnetic insulating phase instead of the spin density wave state is stabilized in the deconfined regime of the phase diagram. This sequence of phases observed under pressure may be considered as a generic behavior for 1/4-filled conductors with correlations

    Approaching the limit of CuII/CuImixed valency in a CuIBr2–N-methylquinoxalinium hybrid compound

    Get PDF
    A novel 1D hybrid salt (MQ)[CuBr2]∞ (MQ = N-methylquinoxalinium) is reported. Structural, spectroscopic and magnetic investigations reveal a minimal CuII doping of less than 0.1%. However it is not possible to distinguish CuI and CuII. The unusually close packing of the organic moieties and the dark brown colour of the crystals suggest a defect electronic structure

    Influence of Quantum Hall Effect on Linear and Nonlinear Conductivity in the FISDW States of the Organic Conductor (TMTSF)_2PF_6

    Full text link
    We report a detailed characterization of quantum Hall effect (QHE) influence on the linear and non-linear resistivity tensor in FISDW phases of the organic conductor (TMTSF)2PF6. We show that the behavior at low electric fields, observed for nominally pure single crystals with different values of the resistivity ratio, is fully consistent with a theoretical model, which takes QHE nature of FISDW and residual quasi-particle density associated with different crystal imperfection levels into account. The non-linearity in longitudinal and diagonal resistivity tensor components observed at large electric fields reconciles preceding contradictory results. Our theoretical model offers a qualitatively good explanation of the observed features if a sliding of the density wave with the concomitant destruction of QHE, switched on above a finite electric field, is taken into account.Comment: 8 pages, 6 figures, submitted to EPJ

    (Sr/Ca)_{14}Cu_{24}O_{41} spin ladders studied by NMR under pressure

    Full text link
    (63)Cu-NMR measurements have been performed on two-leg hole-doped spin ladders Sr_{14-x}Ca_{x}Cu_{24}O_{41} single crystals (0-x-12) at several pressures up to the pressure domain where the stabilization of a superconducting ground state can be achieved. The data reveal marked decrease of the spin gap derived from Knight shift measurements upon Ca substitution and also under pressure and confirm the onset of low lying spin excitations around P_{c} as previously reported. The spin gap in Sr_{2}Ca_{12}Cu_{24}O_{41} is strongly reduced above 20 kbar. However, the data of an experiment performed at P=36 kbar where superconductivity has been detected at 6.7K by an inductive technique have shown that a significant amount of spin excitations remains gapped at 80K when superconductivity sets in. The standard relaxation model with two and three-magnon modes explains fairly well the activated relaxation data in the intermediate temperature regime corresponding to gapped spin excitations using the spin gap data derived from Knight shift experiments.The data of Gaussian relaxation rates of heavily doped samples support the limitation of the coherence lenght at low temperature by the average distance between doped holes. We discuss the interplay between superconductivity and the spin gap and suggest that these new results support the exciting prospect of superconductivity induced by the interladder tunnelling of preformed pairs as long as the pressure remains lower than the pressure corresponding to the maximum of the superconducting critical temperature.Comment: 15 pages Latex, 13 figures. to be published in Eur.Phys.Jour.B,200
    corecore