174 research outputs found
Sleep Patterns in Elementary School Children (Grades 2-5) and Adolescents (Grade 10)
Background: To date, there is limited research examining sleep patterns in elementary school children. Previous researchers focused on parental responses rather than student responses to determine factors that affect sleep. The presented study surveyed sleep patterns and examined external factors affecting total sleep time among elementary school children and adolescents.
Methods: Students in grades 2-5 (n=885) and grade 10 (n=190) enrolled in a public school system in the Northeast, completed a district administered survey that included questions on sleep duration and hygiene.
Results. Average reported sleep duration decreased with increasing grade level. Children in grades 2-5 woke up earlier (31.7-72.4%) and on their own in comparison to adolescents in grade 10 (6.8%). Significantly shorter sleep durations were associated with having a television (grades 2, 4, 5, p< 0.01) or a cell phone in the room (grades 3, 4; p < 0.05), playing on the computer or video games (grades 3, 4, p<.001) before going to bed. In contrast, students in grade 2, 3, & 4 who reported reading a book before going to bed slept on average 21 minutes more per night (p=.029, .007, .009, respectively). For tenth graders, only consumption of energy drinks led to significant reduction in sleep duration (p<.0001).
Conclusion. Sleep is a fundamental aspect in maintaining a healthy and adequate life style. Understanding sleep patterns will assist parents, health care providers, and educators in promoting quality sleep hygiene in school-aged children.Partial funding was provided by BU UROP (Undergraduate Research Opportunities Program)
Association between acoustic features and brain volumes: the Framingham Heart Study
IntroductionAlthough brain magnetic resonance imaging (MRI) is a valuable tool for investigating structural changes in the brain associated with neurodegeneration, the development of non-invasive and cost-effective alternative methods for detecting early cognitive impairment is crucial. The human voice has been increasingly used as an indicator for effectively detecting cognitive disorders, but it remains unclear whether acoustic features are associated with structural neuroimaging.MethodsThis study aims to investigate the association between acoustic features and brain volume and compare the predictive power of each for mild cognitive impairment (MCI) in a large community-based population. The study included participants from the Framingham Heart Study (FHS) who had at least one voice recording and an MRI scan. Sixty-five acoustic features were extracted with the OpenSMILE software (v2.1.3) from each voice recording. Nine MRI measures were derived according to the FHS MRI protocol. We examined the associations between acoustic features and MRI measures using linear regression models adjusted for age, sex, and education. Acoustic composite scores were generated by combining acoustic features significantly associated with MRI measures. The MCI prediction ability of acoustic composite scores and MRI measures were compared by building random forest models and calculating the mean area under the receiver operating characteristic curve (AUC) of 10-fold cross-validation.ResultsThe study included 4,293 participants (age 57 ± 13 years, 53.9% women). During 9.3 ± 3.7 years follow-up, 106 participants were diagnosed with MCI. Seven MRI measures were significantly associated with more than 20 acoustic features after adjusting for multiple testing. The acoustic composite scores can improve the AUC for MCI prediction to 0.794, compared to 0.759 achieved by MRI measures.DiscussionWe found multiple acoustic features were associated with MRI measures, suggesting the potential for using acoustic features as easily accessible digital biomarkers for the early diagnosis of MCI
Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study.
ObjectiveDiabetic and prediabtic states, including insulin resistance, fasting hyperglycemia, and hyperinsulinemia, are associated with metabolic dysregulation. These components have been individually linked to increased risks of cognitive decline and Alzheimer's disease. We aimed to comprehensively relate all of the components of metabolic dysregulation to cognitive function and brain magnetic resonance imaging (MRI) in middle-aged adults.Research design and methodsFramingham Offspring participants who underwent volumetric MRI and detailed cognitive testing and were free of clinical stroke and dementia during examination 7 (1998-2001) constituted our study sample (n = 2,439; 1,311 women; age 61 ± 9 years). We related diabetes, homeostasis model assessment of insulin resistance (HOMA-IR), fasting insulin, and glycohemoglobin levels to cross-sectional MRI measures of total cerebral brain volume (TCBV) and hippocampal volume and to verbal and visuospatial memory and executive function. We serially adjusted for age, sex, and education alone (model A), additionally for other vascular risk factors (model B), and finally, with the inclusion of apolipoprotein E-ε4, plasma homocysteine, C-reactive protein, and interleukin-6 (model C).ResultsWe observed an inverse association between all indices of metabolic dysfunction and TCBV in all models (P < 0.030). The observed difference in TCBV between participants with and without diabetes was equivalent to approximately 6 years of chronologic aging. Diabetes and elevated glycohemoglobin, HOMA-IR, and fasting insulin were related to poorer executive function scores (P < 0.038), whereas only HOMA-IR and fasting insulin were inversely related to visuospatial memory (P < 0.007).ConclusionsMetabolic dysregulation, especially insulin resistance, was associated with lower brain volumes and executive function in a large, relatively healthy, middle-aged, community-based cohort
Genetic Correlates of Brain Aging on MRI and Cognitive Test Measures: A Genome-Wide Association and Linkage Analysis in the Framingham Study
BACKGROUND: Brain magnetic resonance imaging (MRI) and cognitive tests can identify heritable endophenotypes associated with an increased risk of developing stroke, dementia and Alzheimer's disease (AD). We conducted a genome-wide association (GWA) and linkage analysis exploring the genetic basis of these endophenotypes in a community-based sample. METHODS: A total of 705 stroke- and dementia-free Framingham participants (age 62 +9 yrs, 50% male) who underwent volumetric brain MRI and cognitive testing (1999–2002) were genotyped. We used linear models adjusting for first degree relationships via generalized estimating equations (GEE) and family based association tests (FBAT) in additive models to relate qualifying single nucleotide polymorphisms (SNPs, 70,987 autosomal on Affymetrix 100K Human Gene Chip with minor allele frequency ≥ 0.10, genotypic call rate ≥ 0.80, and Hardy-Weinberg equilibrium p-value ≥ 0.001) to multivariable-adjusted residuals of 9 MRI measures including total cerebral brain (TCBV), lobar, ventricular and white matter hyperintensity (WMH) volumes, and 6 cognitive factors/tests assessing verbal and visuospatial memory, visual scanning and motor speed, reading, abstract reasoning and naming. We determined multipoint identity-by-descent utilizing 10,592 informative SNPs and 613 short tandem repeats and used variance component analyses to compute LOD scores. RESULTS: The strongest gene-phenotype association in FBAT analyses was between SORL1 (rs1131497; p = 3.2 × 10-6) and abstract reasoning, and in GEE analyses between CDH4 (rs1970546; p = 3.7 × 10-8) and TCBV. SORL1 plays a role in amyloid precursor protein processing and has been associated with the risk of AD. Among the 50 strongest associations (25 each by GEE and FBAT) were other biologically interesting genes. Polymorphisms within 28 of 163 candidate genes for stroke, AD and memory impairment were associated with the endophenotypes studied at p < 0.001. We confirmed our previously reported linkage of WMH on chromosome 4 and describe linkage of reading performance to a marker on chromosome 18 (GATA11A06), previously linked to dyslexia (LOD scores = 2.2 and 5.1). CONCLUSION: Our results suggest that genes associated with clinical neurological disease also have detectable effects on subclinical phenotypes. These hypothesis generating data illustrate the use of an unbiased approach to discover novel pathways that may be involved in brain aging, and could be used to replicate observations made in other studies.National Institutes of Health National Center for Research Resources Shared Instrumentation grant (ISI0RR163736-01A1); National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195); National Institute of Aging (5R01-AG08122, 5R01-AG16495); National Institute of Neurological Disorders and Stroke (5R01-NS17950
New Norms for a New Generation: Cognitive Performance in the Framingham Offspring Cohort
A previous publication presented normative data on neuropsychological tests stratified by age, gender, and education based on the Original Cohort of the Framingham Heart Study. Many contemporary investigations include subject samples with higher levels of education, a factor known to affect cognitive performance. Secular change in education prompted the reexamination of norms in the children of the Original Cohort. The study population consisted of 853 men and 988 women from the Offspring Study, free of clinical neurological disease, who underwent a neuropsychological examination, which included tests given to their parents in 1974 to 1976 as well as additional newer tests to provide a more comprehensive battery. The Offspring population overall was more evenly distributed by gender and better educated. Their performance on cognitive tests was superior to that of the Original Cohort. Multivariable analyses revealed that more years of education explained only a part of the cohort differences. These findings suggest that continued surveillance of each generation is necessary to document the impact that unique social and economic variables have on cognitive function. Here, the authors provide updated normative data
Dissociating Statistically Determined Normal Cognitive Abilities and Mild Cognitive Impairment Subtypes with DCTclock.
OBJECTIVE: To determine whether the DCTclock can detect differences across groups of patients seen in the memory clinic for suspected dementia.
METHOD: Patients (n = 123) were classified into the following groups: cognitively normal (CN), subtle cognitive impairment (SbCI), amnestic cognitive impairment (aMCI), and mixed/dysexecutive cognitive impairment (mx/dysMCI). Nine outcome variables included a combined command/copy total score and four command and four copy indices measuring drawing efficiency, simple/complex motor operations, information processing speed, and spatial reasoning.
RESULTS: Total combined command/copy score distinguished between groups in all comparisons with medium to large effects. The mx/dysMCI group had the lowest total combined command/copy scores out of all groups. The mx/dysMCI group scored lower than the CN group on all command indices (
CONCLUSIONS: These results suggest that DCTclock command/copy parameters can dissociate CN, SbCI, and MCI subtypes. The larger effect sizes for command clock indices suggest these metrics are sensitive in detecting early cognitive decline. Additional research with a larger sample is warranted
- …