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Abstract

Objective: To determine whether the DCTclock can detect differences across groups of patients seen in the memory
clinic for suspected dementia. Method: Patients (n = 123) were classified into the following groups: cognitively normal
(CN), subtle cognitive impairment (SbCI), amnestic cognitive impairment (aMCI), and mixed/dysexecutive cognitive
impairment (mx/dysMCI). Nine outcome variables included a combined command/copy total score and four command
and four copy indices measuring drawing efficiency, simple/complex motor operations, information processing speed,
and spatial reasoning. Results: Total combined command/copy score distinguished between groups in all comparisons
with medium to large effects. The mx/dysMCI group had the lowest total combined command/copy scores out of all
groups. The mx/dysMCI group scored lower than the CN group on all command indices (p < .050, all analyses); and
lower than the SbCI group on drawing efficiency (p = .011). The aMCI group scored lower than the CN group on
spatial reasoning (p = .019). Smaller effect sizes were obtained for the four copy indices. Conclusions: These results
suggest that DCTclock command/copy parameters can dissociate CN, SbCI, and MCI subtypes. The larger effect sizes
for command clock indices suggest these metrics are sensitive in detecting early cognitive decline. Additional research

with a larger sample is warranted.

Keywords: Cognition, Clock drawing, Digital technologies, Digital clock drawing test, Aging, Boston process approach,

Executive function

INTRODUCTION

The clock drawing test (CDT) is one of the oldest and most
widely used neuropsychological tests due to its ease of
administration, brevity, and ability to capture a wide range
of neuropsychological functions (Cosentino et al., 2004;
Libon et al., 1996). The CDT is comprised of two conditions,
producing a drawing to command, followed by copying a
model of a clock. Successful performance requires accessing
the semantic attributes associated with a clock, the necessary
linguistic abilities to translate the command for time setting

*Correspondence and reprint requests to: Louisa Thompson, PhD,
Department of Psychiatry and Human Behavior, Alpert Medical School of
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into the correct graphomotor response, motor operations, spa-
tial reasoning and organization, working memory, and the
capacity for mental planning (Cosentino et al., 2004; Libon
et al., 1996).

The literature using traditional paper and pencil CDT is
substantial and includes many investigations of its accuracy
in detecting cognitive changes in aging and neurodegener-
ative disease (Hazan et.al, 2018). CDT performance has also
been shown to distinguish between dementia subtypes
and between mild cognitive impairment (MCI) subtypes
(Ahmed et al., 2016; Cosentino et al., 2004; Kozora &
Cullum, 1994; Libon et al., 1996; Price et al., 2011; Royall
et al., 1998). For example, Ahmed et al. (2016) found that
CDT errors across MCI subtypes are highly associated
with language skills, including naming and verbal concept
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formation. Prior research using analog scoring methods
has shown that while participants with AD typically
improve from the command to the copy test condition, par-
ticipants with disproportionate dysexecutive impairment,
as seen in vascular dementia (VaD) and Parkinson’s dis-
ease (PD) often fail to improve. This behavior is thought
to be secondary to the impaired frontal systems operations
that can typify these disorders (Cosentino et al., 2004;
Libon et al., 1996; Price et al., 2011). Indeed, it has been
shown that participants with VaD make more errors overall
and tend to make the same errors on both command and
copy conditions, suggesting an inability to alter mental
set as test conditions change (Cosentino et al., 2004;
Libon et al., 1996; Price et al., 2011). Analog clock draw-
ing behavior has also been shown to be associated with
neuroimaging biomarkers of disease. For example,
Shoyama et al. (2011) obtained analog clock drawings to
command from young normal controls and assessed brain
activity using multichannel near-infrared spectroscopy.
These investigators found that total time to completion
was correlated with increased prefrontal oxygen hemoglo-
bin recruitment.

Despite its merits and longevity, the traditional CDT pose
some challenges as a diagnostic and screening tool. For
example, standard 3, 5, or 10-point scoring systems tend to
capture only a small number of features or errors that might
indicate cognitive impairment. Additional problems associ-
ated with analog clock drawing scoring systems revolve
around the need to establish inter-rater reliability and the time
necessary to score protocols (Price et al., 2011). These prob-
lems tend to limit how the CDT could be used in settings such
as primary medical care to screen for neurocognitive
impairment.

Over the past decade, innovations in digital technology
have enabled researchers to create a digital clock drawing test
(dCDT) that captures a wide range of clock drawing behavior
in real time yielding thousands of variables or features (Libon
etal., 2014; Miiller et al., 2019; Schejter-Margalit et al., 2021;
Souillard-Mandar et al., 2016). Recent research has shown
that machine learning algorithms using features extracted
from the dCDT are able to classify dementia and non-demen-
tia patients into their respective groups (Binaco et al., 2020;
Souillard-Mandar et al., 2016; Dion et al., 2020). For exam-
ple, Bianco et al. (2020) analyzed digital clock drawing fea-
tures using machine learning algorithms. In this research,
neural networks employing an information theoretic feature
selection approach was able to achieve the best 2-group clas-
sification at or above 83% between patients diagnosed with
AD versus and MCI; and between amnestic versus mixed/
dysexecutive MCI, and between CN versus amnestic or
mixed/dysexecutive MCI subtypes. In another study,
Davoudi et al. (2021) extracted digital clock drawing kin-
ematic, time-based, and visuospatial features and examined
how well these features could classify AD, VaD, and normal
control participants into their respective groups. Optimal area
under the curve was achieved using a combination of com-
mand and copy variables measuring kinematic (mean pen
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pressure, ratio of pen pressure to velocity), time-based, and
graphomotor features.

Perhaps some of the most innovative and potentially
informative data that can be extracted using the dCDT are
the variety of timed-based parameters. For example, prior
research has revealed that the majority of clock drawing time
is spent not actually drawing. This behavior—called think time
or time spent not putting ink on the test form has been dem-
onstrated in patients with multiple sclerosis (Libon et al.,
2014), MCI (Dion et al., 2020), and community volunteers
evaluated as part of the Framingham Heart Study (Piers
et al., 2017). Digital clock drawing research has also uncov-
ered a number of decision-making latency variables defined
by the time elapsed between clock drawing components
(Libon et al., 2014, Piers et al., 2017). Research shows that
these decision-making latencies vary in the command versus
the copy test condition (Libon et al., 2014; Piers et al., 2017).
Another recent validation study in non-demented older adults
found that total clock drawing time positively correlated with
performance in multiple cognitive domains, while selected
decision-making latencies were negatively correlated with
performance on many of the same tasks (Dion et al., 2020).

Behavior often seen on the CDT includes the tendency of
patients to initiate the drawing of numbers inside the clock
face using anchor digits (i.e., the numbers 12, 6, 3, 9).
Lamar et al. (2016) studied cognitively normal (CN) older
adults who use an anchoring organizational strategy involv-
ing key digits of the clock face (numbers 12, 3, 6, and 9).
Participants using this strategy had better performance on
executive and memory tasks and exhibited greater regional
integration within the left orbitofrontal and temporal cortices
and the right anterior cingulate/right frontal gyrus.

In sum, there is growing support that digital clock drawing
metrics aid in the differential diagnosis of cognitive diseases
of aging and underlying disruptions in brain function.
However, the dCDT (Libon et al., 2014; Souillard-Mandar
etal., 2016) require some post-processing. Moreover, norma-
tive data is limited. To help make the transition from research
to widespread clinical use it would be useful for a test to
require little to no post-processing and clock drawing indices
expressed as standard scores measuring constructs that under-
lie successful performance. Recently, a dCDT, DCTclock™,
has become commercially available as part of the Linus
health platform (https:/linus.health). The DCTclock™
builds upon previous dCDT research, capturing metrics pre-
viously described in the literature (e.g., ‘think time,’ spatial
organization, drawing size) with machine learning analytics.
The DCTclock™ diverges from prior dCDT by introducing a
cloud-based scoring platform requiring no examiner
post-processing, four age-adjusted composite scores for both
command and copy conditions, and a composite total
command/copy score designed to be user friendly and aid
clinical interpretation. In a recent paper, Rentz and colleagues
(2021) studied a group of CN participants who had amyloid
and tau positron emission tomography (PET) imaging and a
group of participants with MCI or early AD. Among partici-
pants with imaging biomarkers of amyloid and tau, the
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DCTclock™ total score and spatial reasoning index scores
were associated with greater amyloid and tau burden.
Despite these interesting findings, there is limited research
on these DCTclock™ metrics to date.

The current study sought to further investigate the utility
of DCTclock™ generated metrics for distinguishing between
statistically defined MCI subtypes. In the current study, the
DCTclock™ was administered to memory clinic patients
who were classified as presenting with subtle cognitive
impairment (SbCI; Edmonds et al., 2015) or MCI using sta-
tistically determined criteria (Bondi et al., 2014; Jak-Bondi
et al., 2009). Past research regarding MCI suggests different
clinical and pathology outcomes depending on specific MCI
subtypes (Schneider et al., 2009). Therefore, a test that is able
to dissociate between MCI subtypes would have considerable
utility in both primary and special care settings. The goal of
the current research was to assess differences across partici-
pant groups in the total score and composite metrics gener-
ated by DCTclock™.

METHODS

Participants

Participants in the current research (n =103; 100% White
older adults) were patients recruited from Rowan
University, New Jersey Institute for Successful Aging,
Memory Assessment Program (MAP). All MAP patients
underwent a comprehensive neuropsychological evalu-
ation and were examined by a social worker and board-cer-
tified geriatric psychiatrist. An Magnetic resonance
imaging (MRI) study of the brain and appropriate serum
blood tests were obtained to evaluate for reversible causes
of dementia. A clinical diagnosis was determined for
each patient at an interdisciplinary team conference.
Participants diagnosed with MCI presented with subjective
cognitive complaints and/or evidence of cognitive impair-
ment relative to age and education, preservation of general
functional abilities, and the absence of dementia.
Participants were excluded if there was any history of head
injury, substance abuse, or major psychiatric disorders,
including major depression, epilepsy, B12, folate, or thyroid
deficiency. For all participants, a knowledgeable family
member was available to provide information regarding func-
tional status. This study was approved by the Rowan
University Institutional Review Board with consent obtained
consistent with the Declaration of Helsinki.

Neuropsychological Assessment

The neuropsychological protocol used to classify MCI
subtype assessed three domains of cognition: executive
control, naming/lexical access, and episodic memory.
Measures of visuospatial functioning were not assessed
or used for MCI subtype classification. From this protocol,
nine parameters, three from each neurocognitive domain,
were used to classify MCI subtype as described below

https://doi.org/10.1017/51355617722000091 Published online by Cambridge University Press

E.F. Matusz et al.

(Emrani et al., 2018). All test scores were expressed as
z-scores derived from normative data.

Executive Control

This cognitive domain was assessed with three tests including
The Boston Revision of the Wechsler Memory Scale-Mental
Control subtest (Lamar et al., 2002); the letter fluency test
(Spreen & Strauss, 1990); and the Trail Making Test-Part
B (Reitan & Wolfson, 1985). The dependent variable for
the mental control subtest was the total non-automatized
accuracy index (see Lamar et al., 2002 for full details).
The dependent variables obtained from the letter fluency test
and Trail Making Test-Part B were demographically cor-
rected scores provided by Heaton et al. (2004).

Lexical Access/Language

This domain was also assessed with three tests, including the
60-item version of the Boston Naming Test (BNT) (Kaplan
et al., 1983); a test of semantic (‘animals’) fluency where par-
ticipants were asked to produce as many names of animals in
60s excluding perseverations and extra-category intrusion
responses (Spreen & Strauss, 1990); and the Wechsler Adult
Intelligence  Scale-IIl (WAIS-III) Similarities subtest
(Wechsler, 1997). The dependent variables for the BNT and
‘animal’ fluency tests were standard scores adjusted for age,
sex, and race obtained from Heaton et al. (2004). The depen-
dent variable obtained from the WAIS-III Similarities subtest
was the age-corrected scale score (Wechsler, 1997).

Memory and Learning

This cognitive domain was assessed with the 9-word
California Verbal Learning Test (CVLT)-Mental Status test
(Delis et al., 2000). This test was scored and administered
using standard instructions. Three CVLT-short form varia-
bles were used in the current research including total imme-
diate free recall, delayed free recall, and the delayed
recognition measure adjusted for age, sex, and education.

Determination of Clinical Subtypes

Single and Multi-Domain MCI. Jak et al. (2009) criteria were
used to determine MCI subtype. Single domain MCI was
diagnosed when participants scored >1.0 standard deviation
below normative expectations on any of two of the three mea-
sures within a single cognitive domain. Mixed MCI was diag-
nosed when participants scored >1.0 standard deviation
below normative expectations on any of two of the three mea-
sures within two or more cognitive domains. Based on these
procedures, 21 participants were diagnosed with single
domain amnestic MCI (aMCI), 6 participants were diagnosed
with single domain dysexecutive MCI, and 22 were diag-
nosed with mixed or multi-domain MCI. Because of the small
number of dysexecutive MCI participants, a combined
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Table 1. Characteristics of neuropsychologically-defined clinical MCI subgroups

a. Neuropsychological test performance: means z-scores and standard deviations

Tests by cognitive domain CN SbCI aMCI mx/dysMCI
Executive control

WMS-Mental Control .15(.58) —.20(.64) —.06(.72) —.95(1.14)

Letter fluency (‘FAS’) .35(1.03) —.45(1.06) —.20(64) —1.45(1.01)

Trail Making Test — Part B 20(.77) —.29(.67) —.19(1.00) -.91(.82)
Lexical access/language

Boston Naming Test (BNT) A47(.93) —.01(.97) A5(.77) —1.12(1.31)

Semantic fluency (animals) —.08(.65) —.78(92) —1.17(.93) —1.87(.97)

WAIS-III - Similarities .56(.79) 41(.76) .00(.92) —.48(.84)
Memory & learning

CVLT-Short form immediate free recall .50(.95) —.10(.79) —.77(.82) —.95 (.80)

CVLT-Short form delayed free recall .60(.74) —1.14(1.12) —1.74(.49) —1.09(1.20)

CVLT-Short form delayed recognition .60(1.18) —.06(.87) —1.52(.73) —1.15(1.08)
b. Demographic and clinical information: means and standard deviations
Demographic and clinical variables CN SbCI aMCI mx/dysMCI
Age 76.1(5.82) 75.9(7.73) 73.9(6.67) 75.4(6.04)
Education 15.2(2.93) 15.4(2.18) 13.8(2.16) 14.4(2.36)
MMSE 28.5(1.50) 27.9(1.75) 26.7(2.35) 26.7(1.70)
WRAT-IV reading subtest 117.1(15.48) 113.6(15.83) 112.1(14.20) 107.3(15.29)
Geriatric Depression Scale 3.0 (3.07) 3.5(2.71) 2.9(2.24) 4.1(2.49)

Note: WMS = Wechsler Memory Scale; WAIS-III = Wechsler Adult Intelligence Test; CVLT = California Verbal Learning Test; MMSE = Mini-Mental State
Examination; WRAT-IV = Wide Range Achievement Test. CN = normal cognition; SbCI = subtle cognitive impairment; aMCI = amnestic mild cognitive

impairment; mx/dysMCI = mixed/dysexecutive mild cognitive impairment.

mixed/dysexecutive (mx/dys) MCI subgroup (n=28) was
constructed. This decision was made based on prior research
(Emrani et al., 2018, Eppig et al., 2012; Libon et al., 2011)
where mixed/dysexecutive participants presented with simi-
lar patterns of impairment on executive tests. Table 1 shows
descriptive statistics for neuropsychological performance,
demographics, and clinical ratings in each group.

SbCI. Thirty-three of the 54 participants not meeting Jak
et al. (2009) criteria for MCI were classified as presenting
with subtle MCI (SbCI) using a modification of Edmonds
et al. (2015) criteria. These participants scored >1 sd below
the mean on two of the nine neuropsychological measures in
different cognitive domains (Edmonds et al., 2015).

Cognitive Normal (CN) Group

Twenty-one participants did not meet criteria for either SbCI
(Edmonds et al., 2015) or MCI (Bondi et al., 2014, Jak et al.,
2009). One individual presented with some, but very little
cognitive impairment, such that only one of the nine neuro-
psychological parameters was below the 1 SD cutoff. All of
these participants were combined into a single group and
labeled as presenting with CN.

The dCDT

DCTclock™ is based on the traditional paper and pencil
clock drawing task and was originally designed, with
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cooperation from the Clock Sketch Consortium (Libon et al.,
2014), at Lahey Clinic and the Massachusetts Institute of
Technology (Souillard-Mandar et al., 2016). It was further
developed and licensed for research use by Digital Cognition
Technologies Inc. now part of Linus Health, and is cleared
by the Food and Drug Administration for cognitive assessment.
Participants are presented with a paper test form containing a
faint dot pattern and handed a digital pen that looks and func-
tions like a normal pen but contains a camera sensor that cap-
tures pen position every 12 ms. The instructions used to
administer the DCTclock™ are consistent with traditional
CDT administration and included both command and copy test
conditions. In the command condition, participants are asked to,
“draw the face of a clock, put in all numbers, and set the hands
for 10 after 11.” Upon completion of the command test condi-
tion, the copy test condition is administered whereby partici-
pants are asked to copy a model of a clock with hands set for
‘10 after 11°. The digital pen allows for the capture of thousands
of clock drawing features to be analyzed as a series of time-
stamped (X,y) coordinates.

DCTclock™ produces multiple objective measurements
that were derived from approximately 5000 digital clock draw-
ings using machine learning algorithms (Binaco et al., 2020;
Davis et al., 2014). Machine learning algorithms were previ-
ously developed to calculate meaningful clock scores based
on their ability to discriminate performance between thousands
of healthy controls and participants from different diagnostic
groups including aMCI, AD dementia, PD and other neurode-
generative disorders (Davis et al., 2014; Souillard-Mandar
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Table 2. Neurocognitive Biomarkers captured with the DCTclock
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Total Score
conditions

Composite Scales

Drawing Efficiency

A single score between 0 and 100 that captures overall performance across command and copy

The efficiency the participant demonstrated during the process of drawing the clock. This considers

metrics such as total time spent compared to amount of ink used, pen strokes and ink length, size of

the drawing, etc.
Simple/Complex Motor
Operations
Information Processing Speed

The motor components involved during the process of drawing the clock. This considers metrics
including speed and oscillatory motion and can be helpful in parsing out graphomotor concerns.
The ability to process information demonstrated during the process of drawing the clock. This consid-

ers metrics including latencies, pauses, and relative time spent thinking (without pen to paper) ver-

sus actively drawing.
Spatial Reasoning

The spatial abilities demonstrated during the process of drawing the clock. This considers metrics

including geometric and spatial placement of the various properties of the drawing.

Note: Score calculation is automated and cloud-based. Composite and subscale scores are calculated for both command and copy conditions and normed with
respect to cognitively healthy individuals. Composite scales and subscale metrics are adjusted for age.

et al., 2016). Details on how the DCTclock™ algorithm and
scoring process have been described in detail elsewhere
(Rentz et al., 2021). Table 2 contains a description of the 9
DCTclock™ indices used for this analysis.

Statistical Analyses

Hierarchical linear regression models with block-wise predic-
tor entry were constructed to investigate differences among
groups on the DCTclock™ composite indices, and the total
command/copy score. Due to the lack of normative data for
education and sex for the composite indices, education and
sex were entered into Step 1 of the hierarchical models for
these variables to allow for the interpretation of group
differences after controlling for variability among these fac-
tors. Unlike the composite indices, the DCTclock™ total
command/copy score is not adjusted for age, and therefore
we entered age, in addition to education and sex, in Step 1
of the hierarchical models using the total command/copy score.
In Step 2, dummy coded variables representing between-group
differences among the CN and MCI group subtypes were
entered into the model. Dummy coding is a method frequently
utilized in regression analysis to allow for the coding and
incorporation of categorical predictors into the model (see
Tabachnick & Fidell, 2013 for details). This coding sets
one level of the variable as the control group, to which all
other groups are then compared. In order to obtain a
description of all possible group differences, K — 1 dummy
codes, where K represents the levels of the categorical pre-
dictor, were created and included into the regression analy-
sis. The results produced from Step 2 were interpreted to
assess for between-group differences after controlling
for demographics.

RESULTS

Preliminary Analyses

Four participants with DCTclock™ composite index scores
in excess of 3.29 were identified as outliers and removed from
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analyses (Tabachnick & Fidell, 2013). No violations associ-
ated with the ordinary least squares estimator were identified.
Descriptive statistics for all nine DCTclock™ parameters can
be found in Table 3.

Hierarchical Regression Analyses
Distinguishing SbCI from CN

DCTclock™ measures that significantly distinguished SbCI
participants from CN participants include: the Digital
Cognition Technologies (DCT) total score (¢t = —2.85,
p = .005), command spatial reasoning (r = -2.40,
p = .018), copy drawing efficiency ( = —2.08, p = .04), copy
information processing (t = —2.28, p = .025), and copy sim-
ple motor (¢t = —2.13, p = .035). For all of these measures
participants in the SbCI group obtained lower scores than
those in the CN group (Table 4). Overall, the model for
DCT total score generated the greatest effect size (f = —0.33).

Distinguishing MCI from CN

The DCTclock™ measures that significantly distin-
guished MCI from CN participants included: the DCT
total score (aMCI: ¢+ = -2.07, p = .005; mx/dysMCI:
t =-5.07, p < .001), command drawing efficiency (mx/
dysMCI: ¢ = -3.19, p = .002), command information
processing (aMCI: t = —2.23, p = .028; mx/dysMCI:
t = =277, p = .007), command spatial reasoning
(aMCI: t = -3.01, p = .003; mx/dysMCI: t = —5.04,
p < .001), copy drawing efficiency (mx/dysMCI:
t = =3.13, p = .002), and copy information processing
(mx/dysMCI: t = =2.97, p = .004).

Overall, of the three indices that distinguished aMCI from
CN (total score, command information processing, and com-
mand spatial reasoning), the greatest effect size was achieved
using the command spatial reason index (f = —.35). Of the
six indices that distinguished mx/dysMCI from CN (total
score, command drawing efficiency, command information
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Table 3. DCTclock indices (descriptive statistics)

CN, Mean (SD) SbCI, Mean (SD) aMCI, Mean (SD) mx/dys MCI, Mean (SD)

Total Command/Copy Score (¢-score) 65.35 (19.50) 47.01 (20.41) 59.91 (24.45) 40.72 (20.93)
Command Indices (z-score)

Drawing Efficiency —0.08 (1.37) -1.22 (1.17) —0.75 (1.35) —1.39 (1.68)
Information Process Speed 0.40 (0.97) —-0.33 (1.27) —-0.23 (1.03) —0.34 (0.99)
Simple/Complex Motor -0.69 (1.12) —1.29 (0.94) -0.77 (1.07) —1.13 (1.26)
Spatial Reasoning —0.48 (1.10) —1.30 (1.29) —1.39 (1.35) —1.21 (1.39)
Copy Indices (z-score)

Drawing Efficiency 0.18 (0.94) -0.96 (1.31) —0.33 (1.11) —1.01 (1.34)
Information Process Speed —0.22 (-0.90) —0.58 (1.18) —0.02 (0.86) —0.58 (0.97)
Simple/Complex Motor —0.28 (1.09) —0.70 (0.99) —0.28 (0.90) —0.60 (1.03)
Spatial Reasoning —-0.96 (1.33) —1.13 (0.86) —0.63 (1.15) —1.55 (1.30)

Note. CN = cognitively normal; SbCI = subtle cognitive impairment; aMCI = amnestic cognitive impairment; mx/dysMCI = mild/dysexecutive cognitive
impairment.

Table 4. DCTclock hierarchical regression analysis summary

Outcome Step  Predictor Variable R? AR? B SE (B) 95% CI (B) [§ s
DCTclock Total Score 1 05 05
Age -.79 .35 [—1.48, .10] -23 .05
Education 18 .95 [—-1.71, 2.07] .02 .00
Sex? .37 3.75 [-7.07, 7.82] .01 .00
2 26%*k 205%**
SbCI/CN —-16.50 5.79 [-27.99, —5.01] —.33%* .06
aMCI/CN —13.67 6.58 [—-26.72, —.62] —.24%* .03
mx-dysMCI/CN -30.63 6.03 [—42.60, —18.66] —.59%%* .20
aMCI/SbCI 2.83 6.00 [—9.01, 14.74] .05 .00
mx-dysMCI/SbCI —-14.13 5.41 [—24.86, —3.39] =27* .05
mx-dysMCl/aMCI -16.96 6.01 [—28.89, —5.02] —.33%* .06
COM-DE 1 .08* .08*
Education 17 .06 [.05, .29] 27F* .07
Sex? 21 24 [-.27, .69] .04 .01
2 A7E® .09*
SbCI/CN =75 0.40 [—1.54, .05] -23 .03
aMCI/CN -.58 45 [—1.47, .31] —-.16 .01
mxMCI/CN —-1.32 42 [—2.15, .50] —.30%* .09
aMCI/SbCI .16 41 [—.65, .98] .04 .00
mxMCI/SbCI -.58 37 [—1.32, .16] -.17 .02
mxMCl/aMCI -.74 41 [.08, —1.56] =22 .03
COM-IP 1 .00 .00
Education .03 .04 [-.06, .12] .07 .00
sex? -.09 .18 [—.44, .26] -.05 .00
2 .09 .08*
SbCI/CN —-.54 .30 [—1.13,.05] —-24 .03
aMCI/CN =75 .33 [—1.41, —.08] —.28% .05
mxMCI/CN —.86 31 [—1.47, —.24] —.35%* .07
aMCI/SbCI -.20 .30 [-.81, .40] -.08 .00
mxMCI/SbCI =31 .28 [—.86, .24] -.13 .01
mxMCl/aMCI —.11 31 [-.72, .50] -.05 .00
COM-SCM 1 .03 .03
Education .02 .05 [-.07, .11] .05 .00
Sex? .30 .19 [-.07, .66] .16 .03
2 .08 05
SbCI/CN -.60 32 [—1.23,.02] -.25 .04
(Continued)
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Table 4. (Continued)
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Outcome Step  Predictor Variable R? AR? B SE (B) 95% CI (B) p 572
aMCI/CN -.26 .35 [—.96, .44] -.09 .01
mxMCI/CN —.64 33 [—1.29, .01] -.25 .04
aMCI/SbCI .34 32 [—.30, .98] 12 .01
mxMCI/SbCI —-.04 .29 [—.62, .55] -.01 .00
mxMCI/aMCI -.38 .33 [—1.03, .27] -.15 .01
COM-SR 1 .01 .01
Education .04 .06 [-.07, .15] .07 .00
Sex? -.17 23 [—.62, .29] -.07 .00
2 2%k D21k
SbCI/CN -.85 35 [—1.55, —.15] —-.29% .05
aMCI/CN -1.19 .40 [—1.98, —.41] —.35%* .07
mxMCI/CN —-1.85 37 [—2.58, —1.12] —.59%k* .20
aMCI/SbCI -.35 .36 [—1.06, .37] -.10 .01
mxMCI/SbCI —1.00 33 [—1.65, —.35] —.32%% .08
mxMCl/aMCI —.66 .37 [—1.38, .07] =21 .03
COPY-DE 1 .01 .01
Education .06 .05 [-.02, .01] 11 .00
Sex? 11 .20 [-.09, .07] .06 .00
2 2% .10%
SbCI/CN —.68 33 [.01, .15] —.26%* .06
aMCI/CN -.35 37 [.10, .26] -.12 .26
mxMCI/CN -1.06 34 [—.18, —.05] —.39%* .07
aMCI/SbCI .33 34 [—.33, 1.00] 11 .01
mxMCI/SbCI -.38 31 [-.99, .22] —.14 .01
mxMCl/aMCI =72 34 [—1.39, —.04] —.26%* .04
COPY-IP 1 .02 .02
Education -.03 .04 [—.11, .05] -.07 .01
Sex? 15 .16 [—.17, .47] .09 .01
2 d1* 10*
SbCI/CN —.61 27 [—1.14, —.08] —.20% .05
aMCI/CN -.28 .30 [—-.87, .31] —.11 .01
mxMCI/CN —-.82 28 [—1.38, —.27] —.37** .08
aMCI/SbCI 27 27 [—.27, .81] 11 .01
mxMCI/SbCI -.28 25 [-.77, .21] —13 .01
mxMCl/aMCI -.55 28 [—1.10, .00] =25 .04
COPY-SCM 1 .01 .01
Education .03 .04 [-.06, .12] .06 .00
Sex? —.14 17 [—.48, .19] -.09 .01
2 .07 .06
SbCI/CN —.61 .29 [—1.17, —.04] —.28%* .04
aMCI/CN -.20 32 [—.84, .44] -.08 .00
mxMCI/CN -.53 .30 [-1.11, .06 -23 .03
aMCI/SbCI 41 .29 [—.17, .99] .16 .02
mxMCI/SbCI .08 27 [—.45, .61] .04 .00
mxMCIl/aMCI -.33 .30 [-.91, .26] -.14 .01
COPY-SR 1 .00 .00
Education -.03 .05 [-.13, .08] -.05 .00
Sex? —-.04 21 [.86, —.44] -.02 .00
2 .07 .07
SbCI/CN —.12 35 [—.81, .56] -.05 .00
aMCI/CN .26 .39 [—.51, 1.04] .09 .00
mxMCI/CN —.65 .36 [—1.4, .06] -.23 .03
aMCI/SbCI .39 .36 [—.32, 1.09] .13 .01
mxMCI/SbCI -.53 32 [-1.17, .11] -.19 .03
mxMCl/aMCI -91 .36 [—1.63, —20] —.33%* .06

Note. n=105; CI = confidence interval; s> = squared semi-partial correlation coefficient; *1 = female, 0 = male; DCTclock = total command/copy score;
DE = drawing Efficiency; SCM = Simple/Complex Motor Operations; IP = Information Processing; SP = Spatial Reasoning; CN = normal cognition;
SbCI = subtle cognitive impairment; aMCI = amnestic mild cognitive impairment; mx/dysMCI = mixed/dysexecutive cognitive impairment.

*p< .05;
**p< .01
##xp< 001.
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processing, command spatial reasoning, copy drawing effi-
ciency, copy information processing), the greatest effect size
was achieved using the DCT total score and command spatial
reason index (both = —.59). None of the copy indices sig-
nificantly distinguished aMCI from CN participants (p > .05).
Distinguishing mx/dysMCI from aMCI. DCTclock™
measures that significantly distinguished mx/dysMCI partic-
ipants from aMCI participants included DCT total score
(t = -2.82, p = .006), copy drawing efficiency (r = —2.11,
p = .037), and copy Spatial Reasoning (r = -2.54,
p = .012). Participants in the mx/dysMCI group scored lower
on these three indices compared to those in the aMCI group.
Overall, DCT total score and the copy spatial reasoning index
score generated the greatest effect size (both fs = —0.33).

Distinguishing SbCI from MCI and CN

DCTclock™ measures that significantly distinguished SbCI
participants from CN participants included the DCT total
score (1 =2.85, p =.005), the command condition spatial rea-
soning index (r=2.41, p = .018), and the copy condition
drawing efficiency (r =2.09, p = .04) and simple motor indi-
ces (t=2.14, p = .035). Only the command condition spatial
reasoning index distinguished SbCI from mx/dsyMCI
(t=3.04, p = .003) and none of the scores distinguished
ScCI from aMCI.

DISCUSSION

Our findings suggest that DCTclock™ metrics can accurately
distinguish between Jak/Bondi neuropsychological-defined
clinical MCI subtypes, SbCI , and normal cognitive aging
in a memory clinic sample. Critically, while individual index
scores varied from one group comparison to the next, the
DCTclock™ Total Score, a single score that aggregates
across all command and copy condition metrics revealed sig-
nificant differences in performance patterns across groups.

In previous research Cosentino et al. (2004) found that
clock drawing errors in the command condition were asso-
ciated with overall illness severity and degrade access to
semantic knowledge. Errors produced in the copy test con-
dition were associated with dysexecutive difficulty. These
findings underscore the complimentary, but different
neurocognitive abilities that underlie successful clock
drawing. It is very likely that these neurocognitive disabil-
ities contribute to a reduced DCTclock™ total ccore. More
research is necessary to test this supposition. Nonetheless,
the current research suggests that the DCTclock™ total score
could be a reasonable omnibus measure to screen for many
of the important cognitive domains that underlie MCI
and SbCIL.

It has been suggested that the biological substrate under-
lying insidious onset AD/VaD spectrum syndromes (Emrani
etal., 2021a) have their origin years before clinical symptoms
emerge. Thus, there is an urgent need to develop effective and
time efficient tests to screen for emergent neurodegenerative
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illness. The traditional venue to assess for pre-dementia/
dementia illness has been the specialty memory clinic. Yet,
the worldwide prevalence of dementia syndromes, such as
AD, suggests that screening for dementia should become part
of routine primary care. The brevity, ease of administration,
autonomously scoring, and sensitivity to AD biomarkers sug-
gests DCTclock™ could provide the means to screen for neu-
rocognitive impairment in the primary care environment.

In addition to the total score, we found evidence that
DCTclock™ index scores that capture more nuanced aspects
of clock drawing performance also have utility, particularly
for distinguishing between cognitive profiles to inform differ-
ential diagnosis. The index score with the best dissociation
between CN versus SbCI and Jak/Bondi determined MCI
groups in our sample was command spatial reasoning index,
a compilation measuring clock face circularity and the spatial
relationships of the components drawn within the clock face
(i.e., digits, clock hands). These data suggest that nuanced
changes in motor, executive, and visuospatial functioning
critical for clock organization and construction may charac-
terize SbCI and distinguish between profiles of early-stage
amnestic versus executive cognitive decline. These findings
lend empirical support to prior research showing heteromodal
ventral stream alterations in normal control participants who
did not use anchor digits to organize their clock drawings,
thereby displaying less spatial organization/reasoning in their
approach (Lamar et al., 2016). If looked at longitudinally,
subtle motor and spatial reasoning deficits may be a harbinger
of cognitive impairment given the role of ventral steam visual
processing regions in signaling the emergence of SbCI and
conversion from normal cognition to MCI and then to AD
(Lee et al., 2008; Thomann et al., 2008). The findings of
the current study also add to data reported by Rentz and col-
leagues (2021), who showed that the spatial reasoning index
score was associated with greater cerebral amyloid and tau
burden. Interestingly, however, their finding was also specific
to the spatial reasoning index score but from the copy condi-
tion rather than the command condition.

In the current study, copy condition index scores tended to
have the most utility when distinguishing SbCIfrom normal
cognition, and distinguishing mx/dysexecutive MCI from
amnestic MCI and normal cognition. Of the various index
scores in the copy condition, comparisons of group perfor-
mance, with the exception of the amnestic MCI versus nor-
mal cognition comparison, most consistently differed on
the drawing efficiency index. Consistent with the findings
reported by Cosentino et al. (2004), these findings might
suggest that clock drawing to copy is specifically linked
to dysexecutive difficulty. Group differences on copy condi-
tion index scores underscores the benefit of this test condition
and is consistent with a large corpus of prior clock drawing
literature (see Cosentino et al., 2004; Price et al., 2011;
Wiggins et al., 2021). However, further research and replica-
tion will be needed to parse the differential contributions of
the command versus copy conditions for DCTclock™ indi-
ces in normal aging and early-stages cognitive decline.
Further research is also needed to clarify the potentially
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different ways in which DCTclock™ index scores relate to
incident clinical cognitive profiles and neurodegenerative
disease biomarkers.

The current research adds to a growing body of research
demonstrating how digital technology can be engineered to
extract and define subtle and very nuanced behavior that
can differentiate between pre-MCI and MCI subtypes
(Emrani et al., 2021a, 2021b) resulting in better diagnostic
decision-making. Previous research has suggested that par-
ticipants diagnosed with amnestic MCI may be at greater
risk to progress to pathological confirmed AD (Guillozet
et al., 2003; Grundmanet al., 2004; Devlin et al., 2021).
Patients with mixed or dysexecutive MCI may be expected
to revert to a CN state or progress to other dementia syn-
dromes such as frontotemporal dementia, dementia with
Lewy bodies, VaD associated with small vessel disease,
or depression (Schneider et al., 2009; Ferman et al.,
2013; Dugger et al., 2015).

The current research is not without limitations. First, our
sample size is modest, overwhelming white, and highly edu-
cated, which limits the generalizability of our findings.
Gathering digital clock protocols from ethnically and racially
diverse patients and non-native English speakers is critical.
Also, the exact relation between DCTclock™ indices and
education needs to be determined. Second, data were col-
lected from self-referrals presenting to a specialized memory
and aging program because of memory concerns. As stated
above, to maximize the effectiveness for any neurocognitive
screening test, data need to be collected in diverse setting
such as primary medical care, family medicine, and obstet-
rics/gynecology where many women get their primary care.
Third, biomarkers such as cerebral or cerebral spinal fluid
(CSF) amyloid and tau levels, or brain volumetrics and vas-
cular disease markers were not available for this analysis.
We therefore cannot confirm the distinctness of our Jak/
Bondi defined clinical groups, and how these groups relate
to neurodegenerative neuropathology or cerebrovascular
disease. In this regard, there is a need to gather
DCTclock™ data on diverse clinical samples with dementia
biomarkers for further validation. Fourth, we acknowledge
that other neuropsychological tests/domains of cognitive
functioning could have been used for classification of
MCI groups. The rationale for using the protocol that we
did was based on prior research showing that the specific
neuropsychological tests used were able to illustrate key
neurocognitive constructs and differentiate between MCI
subtypes (Emrani et al., 2018). Moreover, in addition to
Jak-Bondi criteria others mean to classify MCI patients in
relation to DCT™ performance should be undertaken.
Lastly, the current study lacks the inclusion of test data from
the visuospatial functioning domain. This domain is rel-
evant to clock drawing performance, and should be exam-
ined in the future.

Despite these limitations, the current study contributes to
the literature in that this is the first report on the ability of
DCTclock™ metrics to distinguish between CN and clinical
SbCI/MCI subtypes. The data described above, along with

https://doi.org/10.1017/51355617722000091 Published online by Cambridge University Press

E.F. Matusz et al.

recent findings described by Rentz and colleagues (2021)
build upon years of prior digital clock drawing and machine
learning research (Binaco et al., 2020; Lamar et al., 2016;
Libon et al., 2014; Piers et al., 2017; Souillard-Mandar
et al., 2016). Collectively, these data provide evidence for
a commercialized and Federal drug administration (FDA)-
approved digital clock drawing tool, DCTclock™ that has
the capacity to leverage this technology for broader clinical
and research use. The provision of normative data, automated
scoring, and simplified composite metrics from the
DCTclock™ system may improve the usability and effi-
ciency of machine learning-based analytics of clock drawing
performance. Finally, a tablet-based version of the DCTclock
has recently been developed by Linus Health. As the field
moves further toward tablet-based digital assessment, addi-
tional research is needed to investigate and compare the val-
idity of digital pen versus table-based approaches to clock
drawing assessment.
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