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Introduction: Although brain magnetic resonance imaging (MRI) is a

valuable tool for investigating structural changes in the brain associated

with neurodegeneration, the development of non-invasive and cost-e�ective

alternativemethods for detecting early cognitive impairment is crucial. The human

voice has been increasingly used as an indicator for e�ectively detecting cognitive

disorders, but it remains unclear whether acoustic features are associated with

structural neuroimaging.

Methods: This study aims to investigate the association between acoustic features

and brain volume and compare the predictive power of each for mild cognitive

impairment (MCI) in a large community-based population. The study included

participants from the Framingham Heart Study (FHS) who had at least one voice

recording and an MRI scan. Sixty-five acoustic features were extracted with the

OpenSMILE software (v2.1.3) from each voice recording. Nine MRI measures

were derived according to the FHS MRI protocol. We examined the associations

between acoustic features and MRI measures using linear regression models

adjusted for age, sex, and education. Acoustic composite scores were generated

by combining acoustic features significantly associated with MRI measures. The

MCI prediction ability of acoustic composite scores and MRI measures were

compared by building random forest models and calculating the mean area under

the receiver operating characteristic curve (AUC) of 10-fold cross-validation.

Results: The study included 4,293 participants (age 57± 13 years, 53.9% women).

During 9.3± 3.7 years follow-up, 106 participants were diagnosedwithMCI. Seven

MRI measures were significantly associated with more than 20 acoustic features

after adjusting formultiple testing. The acoustic composite scores can improve the

AUC for MCI prediction to 0.794, compared to 0.759 achieved by MRI measures.

Discussion: We found multiple acoustic features were associated with MRI

measures, suggesting the potential for using acoustic features as easily accessible

digital biomarkers for the early diagnosis of MCI.
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1 Introduction

Mild Cognitive Impairment (MCI) represents a stage of

cognitive impairment, during which cognitive decline does not

significantly affect daily functioning (Gauthier et al., 2006).

Individuals with MCI may experience difficulty with executive

function and remembering events (Themistocleous et al., 2018).

Currently, there are no definitive disease-modifying treatments

available (Sang et al., 2022). However, it is widely agreed that early

detection is critical. Interventions aimed at reducingmodifiable risk

factors such as blood pressure control and optimal physical exercise

have the potential to delay, attenuate, or even prevent disease onset

and/or progression (Livingston et al., 2020; Rosenberg et al., 2020).

Therefore, detecting MCI is vital so that interventions targeting the

neurodegenerative process, such as clinical trials, may be initiated

to help uncover potential treatment plans (Morrison et al., 2022).

Brain magnetic resonance imaging (MRI) is a useful tool for

investigating structural changes in the brain that are associated

with neurodegeneration, includingMCI (Ries et al., 2008). Multiple

MRI measures are found to associated with the pathology and

progression of cognitive impairment (Chen and Herskovits, 2010;

Del Sole et al., 2016; Graham and Sharp, 2019; Zhu et al., 2021).

By detecting subtle changes in brain volume, MRI can help identify

individuals who are at greater risk of developing MCI (Fennema-

Notestine et al., 2009). However, the cost of MRI and the need

for easy serial testing limits its adoption in low-resource clinical

settings or settings where imaging technologies may be limited. In

the United States, for instance, MRI scans have an average cost of

$1,325, with prices varying from $375 to $2,850 (Prudenzi et al.,

2019). Therefore, it is important to develop alternative methods

for detecting early cognitive impairment using non-invasive and

cost-effective techniques which measure specific brain outputs and

which can ideally be captured relatively passively and be automated.

Communication through vocalization is a key human

characteristic, and engages a number of complex brain networks.

The human voice is an easily accessible and non-invasive method

of collecting data that has gained interest as a potential tool for

detecting cognitive decline (Ding et al., 2022). Speech production

is a highly complex cognitive task (Seraji-Bzorgzad et al., 2019),

and recording speech is easily achievable with the availability

of recording devices. Vocal output is modified by numerous

conditions including as examples affect, alertness/sleepiness,

dyspnea, and structural or functional abnormalities from the cortex

to the vocal-articulatory complex. Language deficits have been

found to occur in the prodromal stages of cognitive impairment

(Cuetos et al., 2007), which may occur years before clinical

diagnosis (Taler and Phillips, 2008; Deramecourt et al., 2010),

potentially making voice-based assessment a promising indicator

for MCI. Meanwhile, recent advancements in speech feature

extraction technology enable the quantification of voice signal

properties from multiple dimensions, enabling a comprehensive

description of specific pathologies through voice features. Previous

research has demonstrated the association of acoustic features with

neuropsychological tests and MCI (Ding et al., 2022). Moreover,

linguistic changes have been associated with specific brain

regions, such as atrophy in the hippocampus (Ramos-Escobar

et al., 2022), temporoparietal regions (Grossman et al., 1997),

and speech motor control networks (Kearney and Guenther,

2019). However, the relationship between acoustic features

and MRI measures remains understudied. Investigating the

association between these two modalities can provide a deeper

understanding of neurodegeneration, complementing the

structural information provided by MRI with the functional

information conveyed by voice features. Furthermore, leveraging

voice-based biomarkers as a screening method can provide a more

economical alternative for MCI screening, making it a valuable

complement to MRI-based assessments.

The objective of this study is to investigate the association

between acoustic features and MRI measures in the Framingham

Heart Study (FHS). We further explore the potential to incorporate

acoustic features in the prediction of incident MCI.

2 Materials and methods

2.1 Sample selection

The FHS is a community-based prospective cohort study that

has been conducted since 1948, with details on the FHS cohorts

previously reported in publications (Wolf, 2012; Mahmood et al.,

2014; Tsao and Vasan, 2015). Cognitive testing was introduced

as part of the FHS in 1976, and in 1999, it became routine

to recruit participants for standardized neuropsychological (NP)

assessments, that also included a concomitant MRI scan. For the

current study, we included participants who had at least one voice-

recorded NP assessment and a contemporary MRI scan within 1

year from 2005 to 2017. We excluded those whose voice recording

was less than 10min in length (n = 8), and those with missing

education information (n= 8). To evaluate the added predictability

of the acoustic composite score for incident MCI, we also excluded

participants who were below 60 years old at the time of voice

recording (n = 2,459), those with prevalent MCI or dementia (n =

145), and those whowere flagged as potentialMCI but had not gone

through dementia review (n = 142). All procedures and protocols

of the FHS were approved by the Institutional Review Board of the

Boston University Medical Campus, and written informed consent

was obtained from all participants.

2.2 Voice recordings

Since 2005, the FHS has digitally recorded all verbal

interactions between the tester and the participant during

administration of NP tests as well as the participant’s spoken

responses to neuropsychological test questions. A sliding window

approach was used to divide each recording into 20-ms segments

with a shifting size of 10ms (Luz et al., 2021; Dumpala et al.,

2022). These segments were then analyzed using OpenSMILE

software (v2.1.3) (Eyben et al., 2010) to extract a set of 65 low-

level descriptor (LLD) features (Schuller et al., 2016), which include

pitch, voice quality, loudness, signal energy, waveform, auditory,

FFT spectrum, spectral, and cepstral. For each recording, the

mean of each LLD feature was computed to capture its high-

level statistical features. Then, normalization was performed by
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subtracting the mean and dividing by the standard deviation. These

features have demonstrated great performance across different

tasks, such as speech processing, music information retrieval, and

emotion recognition (Tahon and Devillers, 2015). A summary of

these acoustic features is provided in Supplementary Table 1 and

the previous publication (Weninger et al., 2013).

2.3 MRI data collection and preprocess

The FHSMRI protocol has been described previously (Thomas

et al., 2021). Briefly, participants were imaged using a Siemens 1.5T

field strength machine (Siemens Medical) with a 3-dimensional

T1- and T2-weighted coronal spoiled gradient-recalled echo

sequence. All images were centrally processed at University

of California Davis Medical Center with standardized brain

structural MRI segmentation procedures (Rajapakse et al., 1996;

Fletcher et al., 2012). An expectation-maximization algorithm

was used to perform segmentation of gray matter, white matter,

and cerebrospinal fluid following skull stripping and intensity

inhomogeneity correction. Segmentation of the hippocampus was

performed utilizing a standard atlas hippocampal segmentation

algorithm (Vercauteren et al., 2007; Boccardi et al., 2014, 2015;

Bocchetta et al., 2015). Established procedures were utilized to

perform segmentation of white matter hyperintensity (WMH)

(Rajapakse et al., 1996; Fletcher et al., 2012). Total cerebral cranial

volume (TCV) was determined by outlining the intracranial vault

lying above the tentorium and was used for correcting head size

(Smith et al., 2008; Aljabar et al., 2009; DeStefano et al., 2009;

Jefferson et al., 2010; Spartano et al., 2019).

This study included the following MRI measures: total cerebral

brain volume (TCBV), cerebral white matter volume (CWMV),

cerebral gray matter volume (CGMV), hippocampal volume

(HV), cortical gray matter (CGM), segmented frontal lobe gray

matter volume (FLGMV), segmented parietal lobe gray matter

volume (PLGMV), segmented temporal lobe gray matter volume

(TLGMV), and segmented occipital lobe gray matter volume

(OLGMV). All MRI measures were represented as the percentage

of these volumes over the TCV to correct for head size difference

(DeCarli et al., 2005).

2.4 Ascertainment of mild cognitive
impairment

The cognitive ascertainment procedures utilized in the FHS

have been thoroughly described (Seshadri et al., 1997). NP tests

are the principal measures used to evaluate the cognitive status

of FHS participants. For those who showed signs of possible

cognitive impairment, NP tests were administered on average every

1–2 years. If cognitive decline was detected, a clinical review was

conducted by a panel consisting of at least one neurologist and

one neuropsychologist. The review panel diagnosed MCI based

on if a participant showed evidence of cognitive performance

decline in at least one cognitive domain, showed no evidence of

functional decline, and did not meet criteria for dementia (Yuan

et al., 2021). To measure the extent of impairment, a severity rating

was provided that is similar in objective as the Clinical Dementia

Rating scale (Hughes et al., 1982). The primary outcome of this

study was incident MCI, which is defined as individuals who were

cognitively intact at the time of voice recording but later diagnosed

with MCI.

2.5 Statistical analyses

This study used the Wilcoxon rank-sum test for continuous

variables (Haynes, 2013) and the Chi-squared test for categorical

variables (McHugh, 2013) to compare the difference in

demographics and MRI measures between incident MCI and

normal control (NC) groups. Linear regression models were

further used to assess the association between each acoustic feature

and MRI measures (Pinheiro and Bates, 2000). To adjust for

multiple comparisons, given the total number of acoustic features

tested against each MRI measure, we employed the Bonferroni

correction method (Armstrong, 2014), and the corrected

significance threshold was defined as P = 0.05/65≈7.7E-04 given

that 65 acoustic features were considered.

A set of acoustic composite scores was generated for MRI

measures as a weighted combination of acoustic features that were

found to be significantly associated with the MRI measure. The

weight assigned to each acoustic feature in the composite score

was established through the training of a linear regression model.

For a given participant i, their acoustic composite score of an MRI

measure was calculated using the following formula:

acoustic_MRIi =

m∑

j=1

αj∗Vij (1)

Here, m refers to the count of acoustic features that exhibit a

significant association with theMRImeasure. The estimate of effect

size for acoustic feature j obtained from the linear regression model

is represented by αj, while Vij denotes the normalized acoustics

feature j for participant i. All models were adjusted for age, sex,

and education.

Random forest models were then developed to assess the model

performance in terms of the area under the receiver operating

characteristics curve (AUC). Three models were compared: a

baseline model using age, sex, and education as predictors; a

second model using age, sex, education, and 9 MRI measures;

and a third using age, sex, education, and acoustic composite

scores as predictors. The mean AUC of 10-fold cross-validation

was calculated for each model. We further conducted a sensitivity

analysis to evaluate the stability of the prediction performance by

constructing two additional models: one using only MRI measures

and another using only the acoustic composite score. All statistical

analyses were conducted using Python (version 3.9.7).

3 Results

Our study included 4,293 participants of FHS (mean baseline

age 57 ± 13 years; 53.9% women; 57.1% self-reported college

educated or higher). The details of sample characteristics are shown

in Table 1.
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TABLE 1 Sample characteristics.

Variable Association analysis Prediction analysis P-value∗∗∗

Total (n = 4,293) Incident MCI (n = 106) Referents∗∗

(n = 1,441)

Age (years), mean (SD) 57 (13) 76 (8) 68 (7) <0.001

Gender, n (%) 0.523

Women 2,314 (53.9) 53 (50.0) 774 (53.7)

Men 1,979 (46.1) 53 (50.0) 667 (46.3)

Education, n (%) 0.001

No high school 89 (2.1) 6 (5.7) 38 (2.6) <0.001

High school 767 (17.9) 33 (31.1) 313 (21.7) <0.001

Some college 986 (23.0) 32 (30.2) 341 (23.7) <0.001

College and higher 2,451 (57.1) 35 (33.0) 749 (52.0) <0.001

MRI measures∗, median (IQR)

Total cerebral brain volume (%) 77.99 (75.82–79.56) 73.63 (72.00–75.41) 76.01 (74.48–77.62) <0.001

Cerebral white matter volume (%) 36.92 (35.31–38.35) 34.42 (32.93–36.09) 36.11 (34.49–37.67) <0.001

Cerebral gray matter volume (%) 40.71 (39.15–42.09) 38.46 (37.44–39.39) 39.54 (38.39–40.74) <0.001

Hippocampal volume (%) 0.54 (0.51–0.57) 0.53 (0.50–0.56) 0.54 (0.51–0.58) <0.001

Cortical gray matter volume (%) 37.27 (35.77–38.57) 35.10 (34.26–36.03) 36.15 (35.03–37.30) <0.001

Segmented frontal lobe gray matter volume (%) 14.42 (13.75–15.05) 13.55 (13.19–14.02) 13.91 (13.37–14.49) <0.001

Segmented parietal lobe gray matter volume (%) 7.98 (7.63–8.33) 7.58 (7.26–7.93) 7.83 (7.47–8.15) <0.001

Segmented temporal lobe gray matter volume (%) 9.94 (9.54–10.33) 9.39 (9.09–9.84) 9.73 (9.35–10.08) <0.001

Segmented occipital lobe gray matter volume (%) 4.87 (4.54–5.18) 4.57 (4.25–4.75) 4.70 (4.41–5.02) <0.001

∗All MRI measures were corrected for head size by calculating the percentage of the volumes over the total cerebral cranial volume above the tentorium.
∗∗The referents are the participants who remained cognitively intact throughout the follow-up period.
∗∗∗The P-value was calculated by the Student’s t-test for age, Wilcoxon rank-sum test for MRI measures due to skewed distribution, and Chi-squared test for categorical variables.

The distribution metrics for each acoustic feature,

encompassing min, 25% quantile, median, 75% quantile, and max,

are outlined in Supplementary Table 2. Their interrelationships are

shown in a correlation heatmap found in Supplementary Figure 1.

We examined the association of acoustic features with MRI

measures. As shown in Tables 2, 3, seven MRI measures (CWMV,

CGMV, HV, CGM, PLGMV, TLGMV, and OLGMV) were

significantly associated with over 20 acoustic features after

Bonferroni correction (P < 7.7E-04). Cerebral gray matter volume

was significantly associated with 47 acoustic features. The acoustic

feature, voicingFinalUnclipped, which represents the voicing

probability of the final fundamental frequency candidate, was

the most significantly associated feature with 4 MRI gray matter

measures (CGMV, CGM, TLGMV, and OLGMV). A larger

voicingFinalUnclipped, for example, was strongly associated with

a smaller segmented occipital lobe gray matter volume (OLGMV)

(P = 3.57E-22). The feature, pcm_fftMag_spectralKurtosis, which

quantifies the spectral shape or distribution of audio signal

energy, was most significantly associated with total cerebral brain

volume (TCBV). Similarly, the feature, audSpec_Rfilt, which

captures crucial aspects of the spectral content and structure of

audio signals as perceived by the human auditory system, was

most significantly associated with cerebral white matter volume

(CWMV). Additionally, pcm_fftMag_spectralSkewness was the

most significant acoustic feature associated with hippocampal

volume. It represents the shape or distribution of the signal’s energy

across different frequency bands. A comprehensive overview of

the associations between acoustic features and MRI measures is

shown in Supplementary Tables 3–11. In the sensitivity analysis,

we further included 98 participants with prevalent stroke to

examine the association between acoustic features and MRI

measures. As shown in Supplementary Table 12, similar acoustic

features were found to associate with MRI measures. We also

excluded the participants who were younger than 60 years and

examined the association between acoustic features and MRI

measures (Supplementary Table 12). About half of the associations

remained significant. In addition, we found 4 associations were

only observed in old people, suggesting potential distinct patterns

between acoustic features and neuroimaging features in old people.

We further built a composite score from these significant

acoustic features for each MRI measure. As expected, these

composite scores were all significantly associated with each

corresponding MRI measure. We further evaluated the added

predictive power of 9 acoustic composite scores for incident MCI.

The analysis was limited to 1,547 participants who were at least

60 years at the time of voice recordings. Among them, 106 were

diagnosed with MCI during an average of 9.3 ± 3.7 years of

follow-up. For the referent group, the baselinemedianMini-Mental
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TABLE 2 The most significant acoustic feature for each MRI measure.

MRI measures Number of significant
acoustic features

Association of most significant acoustic feature

Most significant feature Description E�ect size Standard
error

P-value∗

Total cerebral brain volume (TCBV) 10 pcm_fftMag_spectralKurtosis_sma Magnitude of spectral kurtosis 0.1132 0.0149 3.30E-14

Cerebral white matter volume (CWMV) 44 audSpec_Rfilt_sma[5] RASTA-style filtered auditory spectrum, band 6 0.1099 0.0154 1.27E-12

Cerebral gray matter volume (CGMV) 47 voicingFinalUnclipped_sma The voicing probability of the final fundamental

frequency candidate

−0.2121 0.0193 1.06E-27

Hippocampal volume (HV) 36 pcm_fftMag_spectralSkewness_sma Magnitude of spectral skewness 0.1473 0.0197 8.75E-14

Cortical gray matter volume (CGM) 36 voicingFinalUnclipped_sma The voicing probability of the final fundamental

frequency candidate

−0.1763 0.0201 2.13E-18

Segmented frontal lobe gray matter

volume (FLGMV)

10 F0final_sma The fundamental frequency computed from the

Cepstrum

−0.0555 0.0132 2.52E-05

Segmented parietal lobe gray matter

volume (PLGMV)

22 audSpec_Rfilt_sma[5] RASTA-style filtered auditory spectrum, band 6 −0.0873 0.0152 9.65E-09

Segmented temporal lobe gray matter

volume (TLGMV)

31 voicingFinalUnclipped_sma The voicing probability of the final fundamental

frequency candidate

−0.1803 0.0232 8.51E-15

Segmented occipital lobe gray matter

volume (OLGMV)

27 voicingFinalUnclipped_sma The voicing probability of the final fundamental

frequency candidate

−0.2336 0.0240 3.57E-22

∗Linear regression models were used to assess the association between each acoustic feature and MRI measures adjusted for age, sex, and education. Significant associations were claimed if P < 0.05/65≈7.7E-04.
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TABLE 3 The associations of acoustic composite scores with MRI measures.

MRI measures Association with acoustic composite score

E�ect size Standard error P-value∗

Total cerebral brain volume (TCBV) 0.1183 0.0102 1.33E-30

Cerebral white matter volume (CWMV) 0.1733 0.0152 8.30E-30

Cerebral gray matter volume (CGMV) 0.2233 0.0117 3.22E-78

Hippocampal volume (HV) 0.1710 0.0166 1.15e-24

Cortical gray matter volume (CGM) 0.1888 0.0122 2.03E-52

Segmented frontal lobe gray matter volume (FLGMV) 0.0788 0.0133 3.46E-09

Segmented parietal lobe gray matter volume (PLGMV) 0.1293 0.0149 6.99E-18

Segmented temporal lobe gray matter volume (TLGMV) 0.1827 0.0140 5.63E-38

Segmented occipital lobe gray matter volume (OLGMV) 0.2292 0.0143 4.05E-56

∗Linear regression models were used to assess the association between each acoustic composite score and MRI measures adjusted for age, sex, and education.

FIGURE 1

ROC curves of three models to predict incident MCI.

State Examination (MMSE) score is 29 with an interquartile range

(IQR) of 2. For the MCI group, the baseline median MMSE

score is 29 with an IQR of 3.We built three prediction models

based on random forest. Figure 1 shows that the AUC of MCI

prediction can be improved from 0.717 (Model 1) to 0.759 (Model

2) by including 9 MRI measures with risk factors. The model

with clinical risk factors and acoustic composite scores (Model

3) can further improve performance of MCI prediction to AUC

0.794. In the sensitivity analysis, we also built models solely based

on MRI measures or acoustic composite scores, which reached

an AUC of 0.721 and 0.687, respectively. The AUC values for

predicting incident MCI, based on clinical risk factors combined
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with each distinct acoustic composite score, are presented in

Supplementary Table 13. The composite score derived from the

segmented temporal lobe gray matter volume exhibited the highest

predictive performance for MCI with an AUC of 0.808. We further

include APOE genotype, diabetes, and hypertension as additional

clinical risk factors in the three models. The model with acoustic

composite scores continued to show the best performance of MCI

prediction (AUC 0.795) (Supplementary Figure 2).

4 Discussion

Although MRI measures have been used as an important

biomarker of neurodegeneration, approximately 70% of the global

population has limited or no access to MRI technology (Liu

et al., 2021). Therefore, it would be interesting to explore human

voice as a non-invasive and cost-effective alternative to detect

early cognitive impairment. We examined the relationship between

acoustic features and MRI measures on a large community-based

cohort, and found significant associations between many acoustic

features and gray and white matter volumetric MRI measures. The

performance of the model with only acoustic composite scores and

clinical risk factors reached an AUC of 0.794 to predict incident

MCI. Compared to the burden and cost of conducting MRI scan,

the prediction model based on acoustic features is a more cost-

effective solution. These results suggest the feasibility of using voice

as a potential biomarker for cognitive health screening.

Speech production is a complex process that involves several

brain regions. The primary motor cortex, located in frontal

lobe, controls the movements of the articulators, such as the

lips and tongue (Simonyan and Horwitz, 2011). Consistently,

this study found that 7 acoustic features were associated with

segmented frontal lobe gray matter volume. Previous studies have

also shown that the gray matter volume of the right and left

temporal lobes play an important role in language processing and

speech production (Pihlajamäki et al., 2000; Hickok and Poeppel,

2004; Price, 2010). Notably, this study found that multiple gray

matter regions were associated with acoustic features, suggesting

a more comprehensive connection between gray matter volume

and speech production. The most significantly associated acoustic

feature with multiple MRI measures was voicingFinalUnclipped,

which quantifies the sound quality of an individual’s speech.

This feature can provide information about the timing and

coordination of vocal cord movement during speech production.

Considering speech production involves multiple brain regions

working together in a coordinated manner, these results may

be useful for intriguing hypotheses about speech mechanism for

future validation.

Our results extend the current body of evidence supporting

the predictive ability of human voice for incident MCI. The

added predictive ability of acoustic features was evaluated by

constructing random forest models with baseline features and

acoustic composite scores. These acoustic composite scores were

created to provide a consolidated reflection of multiple acoustic

features, potentially offering a more comprehensive insight into

the underlying neurobiological alterations represented by MRI

measure. The utilization of composite scores presents several

advantages. It allows for the reduction of dimensionality, mitigating

the risk of overfitting, especially in cases where multiple correlated

features are present. Moreover, by condensing information from

various features into a single composite score, we can achieve a

more robust and generalized representation of the data, enhancing

the interpretability of the results, especially in the context of

population-based estimates. The model with baseline features

and nine acoustic composite scores achieved an AUC of 0.794

for incident MCI prediction. However, the models relying solely

on MRI measures or acoustic composite scores showed inferior

performance, suggesting that clinical risk factors play a vital role

in the prediction models. The ability to monitor acoustic features

remotely offers a more convenient way to assess cognitive health.

Moreover, the easy acquisition of voice in daily life makes it an ideal

tool for long-termmonitoring of cognitive status. However, there is

a lack of research about the relationship between acoustic features

and brain structure. Given the rich information from human voice

and the cost-effectiveness of voice recording, our study suggests

that acoustic features might serve as a new data modality to detect

nuanced changes in cognition.

Strengths of this study include that the association between

acoustic features and MRI measures was examined in participants

from a community-based cohort with a diverse range of ages

and health conditions. Each voice recording lasts, on average,

around an hour, and contains a wealth of information. The

longitudinal collection of data provides a great opportunity to

assess the cognitive health of participants and prospectively reveals

a temporal relationship between acoustic features andMCI. The use

of acoustic features as a biomarker for cognitive impairment could

provide a valuable tool for clinicians to screen patients for cognitive

decline, especially in settings where imaging technologies such as

MRI are not readily available. Moreover, the utilization of acoustic

features via remote/digital technology, such as a smartphone

application that participants can speak into, enables clinicians

to detect MCI outside of clinical settings and effectively reduce

the cost of detection. Beyond the clinical settings, it provided

the ability to use remote/digital technology (i.e., a smartphone

app that a patient speaks into) to help clinicians detect MCI

and effectively lower the cost of detection. Additionally, such an

approach could be used to track the progression of cognitive

decline over time and potentially monitor the effectiveness

of treatments.

This study also has several limitations. First, it is important

to note that despite a rigorous adjudication process for MCI

diagnoses, there remains the possibility of misclassifications.

Second, voice recordings were collected in a well-controlled

environment; therefore it is unclear whether the results would

hold based on voice from daily communications. Third, due to

the cross-sectional nature of association analysis, we could not

get the causality relationship between voice and brain structure.

Affective state and sleepiness/alertness are other factors which can

intuitively impact voice characteristics, and may impact analysis

positively or negatively—as such modulation may be transient or

may alternatively amplify MCI-related change. Another limitation

of this study is that the observed associations between acoustic

features and MRI measures could be influenced by the normal

aging process. This is because the regression analyses were
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performed across the entire cohort, and the included brain regions

predominantly reflect global atrophy rather than specific acoustic

processes. Besides, a limitation in comparing the methods is

that the acoustic composite scores were formulated based on

MRI measures, rather than being ascertained independently from

MRI data. Finally, FHS participants were mostly of European

ancestry and English speakers; therefore, the applicability of

our findings to populations of other ethnicities and languages

needs to be examined. It should be expected that different

languages and dialects, or heavily accented vocal outputs will

pose tractable challenges. External validation is imperative to

substantiate our findings before they can be broadly applied

or generalized.

In summary, we examined the association of acoustic features

with MRI measures in a large community-based cohort. While

more research is needed to fully understand the relationship

between acoustic features with MRI measures, this study provides

evidence that acoustic features might be used as potential

biomarkers to assess future MCI risk.
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