159 research outputs found

    Zebrafish cone contributions and ERG waveforms as impacted by CNQX

    Get PDF
    The effect of the glutamate antagonist CNQX (6-cyano-7-nitroquinoxaline-2,3dione) on Off-bipolar cells in the zebrafish (Dania reria) was examined. CNQX has suppressed the d-wave component of electroretinogram (ERG) in other species. Here, adult zebrafish received an injection ofCNQX or saline solution. They were then presented 200 ms stimuli at 17 wavelengths and several irradiances. Spectral sensitivity was calculated from the b-wave components ofthe ERG responses. Retinal injection of CNQX impacted the a-, b-, and d-waves ofthe ERG, especially at longer wavelengths. Significant differences in the spectral sensitivity functions of the CNQX and saline groups were found at 460 nm and 540 urn-the location ofM - Sand L - M color opponent mechanisms; thus, CNQX suppresses the color-opponent mechanisms. The fact that CNQX selectively affects sensitivity at longer wavelengths supports the presence of multiple Off-bipolar cell types. This study sought to further clarify the specificity of Off-bipolar cells and the general visual pathway of the adult zebrafish

    FARS2 mutations presenting with pure spastic paraplegia and lesions of the dentate nuclei.

    Get PDF
    Mutations in FARS2, the gene encoding the mitochondrial phenylalanine-tRNA synthetase (mtPheRS), have been linked to a range of phenotypes including epileptic encephalopathy, developmental delay, and motor dysfunction. We report a 9-year-old boy with novel compound heterozygous variants of FARS2, presenting with a pure spastic paraplegia syndrome associated with bilateral signal abnormalities in the dentate nuclei. Exome sequencing identified a paternal nonsense variant (Q216X) lacking the catalytic core and anticodon-binding regions, and a maternal missense variant (P136H) possessing partial enzymatic activity. This case confirms and expands the phenotype related to FARS2 mutations with regards to clinical presentation and neuroimaging findings

    Genetic Correlates of Brain Aging on MRI and Cognitive Test Measures: A Genome-Wide Association and Linkage Analysis in the Framingham Study

    Get PDF
    BACKGROUND: Brain magnetic resonance imaging (MRI) and cognitive tests can identify heritable endophenotypes associated with an increased risk of developing stroke, dementia and Alzheimer's disease (AD). We conducted a genome-wide association (GWA) and linkage analysis exploring the genetic basis of these endophenotypes in a community-based sample. METHODS: A total of 705 stroke- and dementia-free Framingham participants (age 62 +9 yrs, 50% male) who underwent volumetric brain MRI and cognitive testing (1999–2002) were genotyped. We used linear models adjusting for first degree relationships via generalized estimating equations (GEE) and family based association tests (FBAT) in additive models to relate qualifying single nucleotide polymorphisms (SNPs, 70,987 autosomal on Affymetrix 100K Human Gene Chip with minor allele frequency ≥ 0.10, genotypic call rate ≥ 0.80, and Hardy-Weinberg equilibrium p-value ≥ 0.001) to multivariable-adjusted residuals of 9 MRI measures including total cerebral brain (TCBV), lobar, ventricular and white matter hyperintensity (WMH) volumes, and 6 cognitive factors/tests assessing verbal and visuospatial memory, visual scanning and motor speed, reading, abstract reasoning and naming. We determined multipoint identity-by-descent utilizing 10,592 informative SNPs and 613 short tandem repeats and used variance component analyses to compute LOD scores. RESULTS: The strongest gene-phenotype association in FBAT analyses was between SORL1 (rs1131497; p = 3.2 × 10-6) and abstract reasoning, and in GEE analyses between CDH4 (rs1970546; p = 3.7 × 10-8) and TCBV. SORL1 plays a role in amyloid precursor protein processing and has been associated with the risk of AD. Among the 50 strongest associations (25 each by GEE and FBAT) were other biologically interesting genes. Polymorphisms within 28 of 163 candidate genes for stroke, AD and memory impairment were associated with the endophenotypes studied at p < 0.001. We confirmed our previously reported linkage of WMH on chromosome 4 and describe linkage of reading performance to a marker on chromosome 18 (GATA11A06), previously linked to dyslexia (LOD scores = 2.2 and 5.1). CONCLUSION: Our results suggest that genes associated with clinical neurological disease also have detectable effects on subclinical phenotypes. These hypothesis generating data illustrate the use of an unbiased approach to discover novel pathways that may be involved in brain aging, and could be used to replicate observations made in other studies.National Institutes of Health National Center for Research Resources Shared Instrumentation grant (ISI0RR163736-01A1); National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195); National Institute of Aging (5R01-AG08122, 5R01-AG16495); National Institute of Neurological Disorders and Stroke (5R01-NS17950

    Stressed-Induced TMEM135 Protein Is Part of a Conserved Genetic Network Involved in Fat Storage and Longevity Regulation in Caenorhabditis elegans

    Get PDF
    Disorders of mitochondrial fat metabolism lead to sudden death in infants and children. Although survival is possible, the underlying molecular mechanisms which enable this outcome have not yet been clearly identified. Here we describe a conserved genetic network linking disorders of mitochondrial fat metabolism in mice to mechanisms of fat storage and survival in Caenorhabditis elegans (C. elegans). We have previously documented a mouse model of mitochondrial very-long chain acyl-CoA dehydrogenase (VLCAD) deficiency.[1] We originally reported that the mice survived birth, but, upon exposure to cold and fasting stresses, these mice developed cardiac dysfunction, which greatly reduced survival. We used cDNA microarrays[2], [3], [4] to outline the induction of several markers of lipid metabolism in the heart at birth in surviving mice. We hypothesized that the induction of fat metabolism genes in the heart at birth is part of a regulatory feedback circuit that plays a critical role in survival.[1] The present study uses a dual approach employing both C57BL/6 mice and the nematode, C. elegans, to focus on TMEM135, a conserved protein which we have found to be upregulated 4.3 (±0.14)-fold in VLCAD-deficient mice at birth. Our studies have demonstrated that TMEM135 is highly expressed in mitochondria and in fat-loaded tissues in the mouse. Further, when fasting and cold stresses were introduced to mice, we observed 3.25 (±0.03)- and 8.2 (±0.31)- fold increases in TMEM135 expression in the heart, respectively. Additionally, we found that deletion of the tmem135 orthologue in C. elegans caused a 41.8% (±2.8%) reduction in fat stores, a reduction in mitochondrial action potential and decreased longevity of the worm. In stark contrast, C. elegans transgenic animals overexpressing TMEM-135 exhibited increased longevity upon exposure to cold stress. Based on these results, we propose that TMEM135 integrates biological processes involving fat metabolism and energy expenditure in both the worm (invertebrates) and in mammalian organisms. The data obtained from our experiments suggest that TMEM135 is part of a regulatory circuit that plays a critical role in the survival of VLCAD-deficient mice and perhaps in other mitochondrial genetic defects of fat metabolism as well

    \u3cem\u3eFARS2\u3c/em\u3e Mutations Presenting with Pure Spastic Paraplegia and Lesions of the Dentate Nuclei

    Get PDF
    Mutations in FARS2, the gene encoding the mitochondrial phenylalanine‐tRNA synthetase (mtPheRS), have been linked to a range of phenotypes including epileptic encephalopathy, developmental delay, and motor dysfunction. We report a 9‐year‐old boy with novel compound heterozygous variants of FARS2, presenting with a pure spastic paraplegia syndrome associated with bilateral signal abnormalities in the dentate nuclei. Exome sequencing identified a paternal nonsense variant (Q216X) lacking the catalytic core and anticodon‐binding regions, and a maternal missense variant (P136H) possessing partial enzymatic activity. This case confirms and expands the phenotype related to FARS mutations with regards to clinical presentation and neuroimaging findings

    Influence of Pretransplant Restrictive Lung Disease on Allogeneic Hematopoietic Cell Transplantation Outcomes

    Get PDF
    We conducted a 15-year retrospective cohort study to determine the prevalence of restrictive lung disease prior to allogeneic hematopoietic cell transplant (HCT), and to assess whether this was a risk factor for poor outcomes. 2545 patients were eligible for the analysis. Restrictive lung disease was defined as a total lung capacity (TLC) <80% of predicted normal. Chest x-rays and /or computed tomography scans were reviewed for all restricted patients to determine whether lung parenchymal abnormalities were unlikely or highly likely to cause restriction. Multivariate Cox-proportional hazard and sensitivity analyses were performed to assess the relationship between restriction and early respiratory failure and nonrelapse mortality. Restrictive lung disease was present in 194 subjects (7.6%) prior to transplantation. Among these cases, radiographically apparent abnormalities were unlikely to be the cause of the restriction in 149 (77%) subjects. In unadjusted and adjusted analyses, the presence of pulmonary restriction was significantly associated with a 2-fold increase in risk for early respiratory failure and nonrelapse mortality, suggesting that these outcomes occurring in the absence of radiographically apparent abnormalities may be related to respiratory muscle weakness. These findings suggest that pulmonary restriction should be considered as a risk factor for poor outcomes after transplant
    corecore