131 research outputs found

    Machinability aspects in dry turning of Ti6Al4V alloy with HiPIMS coated carbide inserts

    Get PDF
    533-541Owing to their unique mechanical properties, titanium alloys have been and will be used extensively in a myriad of industries ranging from aerospace to automotive to medical field. Hence, a continuous improvement in the performance of the coated inserts with hard materials capable of enhanced tribological and wear resistive properties is necessary. The present work contributes to investigation of the influence of cutting parameters in turning operations of the alpha-beta titanium alloy- Ti-6Al-4V. Tungsten carbide inserts of K20 grade is coated with TiAlN and AlCrN monolayer coatings by high power impulse magnetron sputtering (HPPMS). Machinability of Ti6Al4V alloy is studied at different cutting speed, feed ranging from 60 to 120 m/min and 0.1 to 0.25 mm/rev with constant depth of cut of 0.5 mm to evaluate the optimum turning parameters under dry environment. The tool wear is observed initially under an optical microscope and nature of wear is observed with scanning electron microscope (SEM). It is witnessed that the AlCrN coated inserts have an upper edge over the TiAlN coated inserts due to better adhesion and thermal stability of the coating. Tool wear and surface finish is found to be optimum at cutting speed of 100 m/min, feed of 0.1mm/rev and depth of cut 0.5 mm. The present will provide useful and economic machining solutions for the high speed machining of titanium alloys by effective utilization of coated tungsten carbide inserts

    Machinability aspects in dry turning of Ti6Al4V alloy with HiPIMS coated carbide inserts

    Get PDF
    Owing to their unique mechanical properties, titanium alloys have been and will be used extensively in a myriad of industries ranging from aerospace to automotive to medical field. Hence, a continuous improvement in the performance of the coated inserts with hard materials capable of enhanced tribological and wear resistive properties is necessary. The present work contributes to investigation of the influence of cutting parameters in turning operations of the alpha-beta titanium alloy- Ti-6Al-4V. Tungsten carbide inserts of K20 grade is coated with TiAlN and AlCrN monolayer coatings by high power impulse magnetron sputtering (HPPMS). Machinability of Ti6Al4V alloy is studied at different cutting speed, feed ranging from 60 to 120 m/min and 0.1 to 0.25 mm/rev with constant depth of cut of 0.5 mm to evaluate the optimum turning parameters under dry environment. The tool wear is observed initially under an optical microscope and nature of wear is observed with scanning electron microscope (SEM). It is witnessed that the AlCrN coated inserts have an upper edge over the TiAlN coated inserts due to better adhesion and thermal stability of the coating. Tool wear and surface finish is found to be optimum at cutting speed of 100 m/min, feed of 0.1mm/rev and depth of cut 0.5 mm. The present will provide useful and economic machining solutions for the high speed machining of titanium alloys by effective utilization of coated tungsten carbide inserts

    Linear cyclodextrin polymer prodrugs as novel yherapeutics for Niemann-Pick type C1 disorder

    Get PDF
    Niemann-Pick Type C1 disorder (NPC) is a rare lysosomal storage disease characterized by the accumulation of cholesterol in lysosomes. NPC has no FDA approved treatments yet, however 2-hydroxypropyl-β-cyclodextrin (HPβCD) has shown efficacy for treating the disease in both mouse and feline NPC models and is currently being investigated in late stage clinical trials. Despite promising results, therapeutic use of HPβCD is limited by the need for high doses, ototoxicity and intrathecal administration. These limitations can be attributed to its poor pharmacokinetic profile. In the attempt to overcome these limitations, we have designed a β-cyclodextrin (βCD) based polymer prodrugs (ORX-301) for an enhanced pharmacokinetic and biodistribution profile, which in turn can potentially provide an improved efficacy at lower doses. We demonstrated that subcutaneously injected ORX-301 extended the mean lifespan of NPC mice at a dosage 5-fold lower (800 mg/kg, body weight) the HPβCD dose proven efficacious (4000 mg/kg). We also show that ORX-301 penetrates the blood brain barrier and counteracts neurological impairment. These properties represent a substantial improvement and appear to overcome major limitations of presently available βCD-based therapy, demonstrating that this novel prodrug is a valuable alternative/complement for existing therapies

    Management of chyle leak in right side neck dissection: a rare case and review of literature (a case report)

    Get PDF
    Chyle leak is a well-recognized iatrogenic thoracic duct injury but a rare and serious complication of head and neck surgery affecting 1-2.5% of head and neck surgery dissections. It is potentially a life-threatening condition and management may be problematic and prolonged. Here we presented a rare case report of right sided chyle leak with its surgical management and review of literature. A 56-year-old patient with a complain of non-healing ulcer in the right buccal vestibule in the last 1-2 months reported to the outpatient department (OPD). After complete preoperative profile and counseling patient's consent was taken and wide local excision of lesion was done with bite composite resection with right hemimandibulectomy and maxillary alveolectomy till pterygoid plates, with right side selective neck dissection, level I-III followed by reconstruction with right side pectoralis major myofascial flap. Then the patient was on 5 days octreotide therapy. Regular post-operative follow-up was taken and no leak was noted further. In case of a chyle leak early diagnosis and aggressive treatment is essential to avoid local and systemic complications that prolong hospitalization

    Characterization of Al2O3 reinforced Al 6061 metal matrix composite

    Get PDF
    Composites are a class of materials that give the desired individual tribological and mechanical characteristics. In composite materials, more than two materials are combined to provide a unique combination of properties. This article describes the tribological and mechanical properties of Al6061 reinforced with Al2O3, found experimentally. This article describes the preparation of Al6061 composites with 5 % Al2O3 (size 50 microns) by stir casting process. The hardness of Al6061 with and without amplification was found out with the help of Rockwell hardness tester for 10 seconds at a load of 100 kg. It was found that the hardness of Al2O3 reinforced Al6061 increases compared to unreinforced Al6061. The characteristics related to wear of Al6061 and the new composite material Al6061+Al2O3 were studied. The “pin on disk” method was used with the variation of load varying from 5N-200N and a speed range of 200-1500. An analysis of the sensitivity of key parameters such as load and speed is also described. The results show that the newly developed composite material has a lesser specific rate of wear

    Impact of adoption of heat-stress tolerant maize hybrid on yield and profitability: Evidence from Terai region of Nepal

    Get PDF
    Abiotic stresses (drought, heat) are one of the major impediments to enhancing the maize productivity of marginal farmers in the facet of climate change. The present study attempts to investigate the impact of heat-tolerant maize hybrid on yield and income in the Terai region of Nepal. This study uses cross-sectional farm household-level data collected in August 2021 from a randomly selected sample of 404 rural households. We used a doubly robust inverse probability weighted regression adjustment method to obtain reliable impact estimates. Adoption of heat-tolerant hybrid increases yields by 16% and income by 44% in the spring season (a stress condition). Overall, yield increases by 12%, net income by 31%, saving of 40% in seed costs, and per capita food expenditure increases by 8.50%. Hence a conducive environment must be created for scaling up heat-tolerant maize varieties to increase productivity, minimize risk, and transform of the maize sector

    NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics

    Full text link
    BACKGROUND Accurate and repeatable measurement of high-grade glioma (HGG) enhancing (Enh.) and T2/FLAIR hyperintensity/edema (Ed.) is required for monitoring treatment response. 3D measurements can be used to inform the modified Response Assessment in Neuro-oncology criteria. We aim to develop an HGG volumetric measurement and visualization AI algorithm that is generalizable and repeatable. METHODS A single 3D-Convoluted Neural Network, NS-HGlio, to analyze HGG on MRIs using 5-fold cross validation was developed using retrospective (557 MRIs), multicentre (38 sites) and multivendor (32 scanners) dataset divided into training (70%), validation (20%), and testing (10%). Six neuroradiologists created the ground truth (GT). Additional Internal validation (IV, three institutions) using 70 MRIs, and External validation (EV, single institution) using 40 MRIs through measuring the Dice Similarity Coefficient (DSC) of Enh., Ed. ,and Enh. + Ed. (WholeLesion/WL) tumor tissue and repeatability testing on 14 subjects from the TCIA MGH-QIN-GBM dataset using volume correlations between timepoints were performed. RESULTS IV Preoperative median DSC Enh. 0.89 (SD 0.11), Ed. 0.88 (0.28), WL 0.88 (0.11). EV Preoperative median DSC Enh. 0.82 (0.09), Ed. 0.83 (0.11), WL 0.86 (0.06). IV Postoperative median DSC Enh. 0.77 (SD 0.20), Ed 0.78. (SD 0.09), WL 0.78 (SD 0.11). EV Postoperative median DSC Enh. 0.75 (0.21), Ed 0.74 (0.12), WL 0.79 (0.07). Repeatability testing; Intraclass Correlation Coefficient of 0.95 Enh. and 0.92 Ed. CONCLUSION NS-HGlio is accurate, repeatable, and generalizable. The output can be used for visualization, documentation, treatment response monitoring, radiation planning, intra-operative targeting, and estimation of Residual Tumor Volume among others

    The Ionospheric Impact of an ICME-Driven Sheath Region Over Indian and American Sectors in the Absence of a Typical Geomagnetic Storm

    Get PDF
    On 13 April 2013, the ACE spacecraft detected arrival of an interplanetary shock at 2250 UT, which is followed by the passage of the sheath region of an interplanetary coronal mass ejection (ICME) for a prolonged (18‐hr) period. The polarity of interplanetary magnetic field Bz was northward inside the magnetic cloud region of the ICME. The ring current (SYM‐H) index did not go below −7 nT during this event suggesting the absence of a typical geomagnetic storm. The responses of the global ionospheric electric field associated with the passage of the ICME sheath region have been investigated using incoherent scatter radar measurements of Jicamarca and Arecibo (postmidnight sector) along with the variations of equatorial electrojet strength over India (day sector). It is found that westward and eastward prompt penetration (PP) electric fields affected ionosphere over Jicamarca/Arecibo and Indian sectors, respectively, during 0545–0800 UT. The polarities of the PP electric field perturbations over the day/night sectors are consistent with model predictions. In fact, DP2‐type electric field perturbations with ∼40‐min periodicity are found to affect the ionosphere over both the sectors for about 2.25 hr during the passage of the ICME sheath region. This result shows that SYM‐H index may not capture the full geoeffectivness of the ICME sheath‐driven storms and suggests that the PP electric field perturbations should be evaluated for geoeffectiveness of ICME when the polarity of interplanetary magnetic field Bz is northward inside the magnetic cloud region of the ICME
    corecore