79 research outputs found

    Screening, isolation, and purification of active compounds against Klebsiella pneumoniae

    Get PDF
    The spread of multi-resistant bacteria is a contemporary real threat that constitutes a public health risk. Resistance to antibiotics has increased progressively since their discovery due to their misuse and abuse. Therefore, finding new antimicrobial compounds has become a worldwide task.By screening a culture collection, this study aimed to find bacteria and fungi able to inhibit the growth of Klebsiella pneumoniae. Replica plating, SPE-X columns, disk- diffusion assays, and agar-well diffusion assays are some of the techniques that have been used to isolate and purify the active compounds.Of all microorganisms tested, Epicoccum nigrum (MES 1587) showed the most promising results. It was able to inhibit not only K. pneumoniae, but also S. aureus, P. aeruginosa, B. subtilis, E. faecalis, and E. coli in both disk-diffusion assays and agar- well diffusion assays. It was also shown that its inhibition started upon 8 days of culture and increased over time.Regarding the rest of the microorganisms that inhibited K. pneumoniae in replica plating, it was impossible to reproduce the positive results after SPE-X purification.<br /

    The Antibiotics Dityromycin and GE82832 Bind Protein S12 and Block EF-G-Catalyzed Translocation

    Get PDF
    SummaryThe translocation of mRNA and tRNA through the ribosome is catalyzed by elongation factor G (EF-G), a universally conserved guanosine triphosphate hydrolase (GTPase). The mechanism by which the closely related decapeptide antibiotics dityromycin and GE82832 inhibit EF-G-catalyzed translocation is elucidated in this study. Using crystallographic and biochemical experiments, we demonstrate that these antibiotics bind to ribosomal protein S12 in solution alone as well as within the small ribosomal subunit, inducing long-range effects on the ribosomal head. The crystal structure of the antibiotic in complex with the 70S ribosome reveals that the binding involves conserved amino acid residues of S12 whose mutations result in in vitro and in vivo antibiotic resistance and loss of antibiotic binding. The data also suggest that GE82832/dityromycin inhibits EF-G-catalyzed translocation by disrupting a critical contact between EF-G and S12 that is required to stabilize the posttranslocational conformation of EF-G, thereby preventing the ribosome-EF-G complex from entering a conformation productive for translocation

    Characterization of the Self-Resistance Mechanism to Dityromycin in the Streptomyces Producer Strain

    Get PDF
    Dityromycin is a peptide antibiotic isolated from the culture broth of the soil microorganism Streptomyces sp. strain AM-2504. Recent structural studies have shown that dityromycin targets the ribosomal protein S12 in the 30S ribosomal subunit, inhibiting translocation. Herein, by using in vitro protein synthesis assays, we identified the resistance mechanism of the producer strain to the secondary metabolite dityromycin. The results show that the self-resistance mechanism of the Streptomyces sp. strain AM-2504 is due to a specific modification of the ribosome. In particular, two amino acid substitutions, located in a highly conserved region of the S12 protein corresponding to the binding site of the antibiotic, were found. These mutations cause a substantial loss of affinity of the dityromycin for the 30S ribosomal subunit, protecting the producer strain from the toxic effect of the antibiotic. In addition to providing a detailed description of the first mechanism of self-resistance based on a mutated ribosomal protein, this work demonstrates that the molecular determinants of the dityromycin resistance identified in Streptomyces can be transferred to Escherichia coli ribosomes, where they can trigger the same antibiotic resistance mechanism found in the producer strain.IMPORTANCE The World Health Organization has identified antimicrobial resistance as a substantial threat to human health. Because of the emergence of pathogenic bacteria resistant to multiple antibiotics worldwide, there is a need to identify the mode of action of antibiotics and to unravel the basic mechanisms responsible for drug resistance. Antibiotic producers' microorganisms can protect themselves from the toxic effect of the drug using different strategies; one of the most common involves the modification of the antibiotic's target site. In this work, we report a detailed analysis of the molecular mechanism, based on protein modification, devised by the soil microorganism Streptomyces sp. strain AM-2504 to protect itself from the activity of the peptide antibiotic dityromycin. Furthermore, we demonstrate that this mechanism can be reproduced in E. coli, thereby eliciting antibiotic resistance in this human commensal bacterium

    Draft Genome Sequence of Streptomyces sp. Strain AM-2504, Identified by 16S rRNA Comparative Analysis as a Streptomyces kasugaensis Strain

    Get PDF
    We report here the draft genome sequence of Streptomyces sp. strain AM-2504, a microorganism producing a broad range of biotechnologically relevant molecules. The comparative analysis of its 16S rRNA sequence allowed the assignment of this strain to the Streptomyces kasugaensis species, thus fostering functional characterization of the secondary metabolites produced by this microorganism

    A Derivative of the Thiopeptide GE2270A Highly Selective against Propionibacterium acnes

    Get PDF
    A chemical derivative of the thiopeptide GE2270A, designated NAI003, was found to possess a substantially reduced antibacterial spectrum in comparison to the parent compound, being active against just a few Gram-positive bacteria. In particular, NAI003 retained low MICs against all tested isolates of Propionibacterium acnes and, to a lesser extent, against Enterococcus faecalis. Furthermore, NAI003 showed a time- and dose-dependent killing of both a clindamycin-resistant and a clindamycinsensitive P. acnes isolate. Gel shift experiments indicated that, like the parent compound, NAI003 retained the ability to bind to elongation factors Tu (EF-Tus) derived from Escherichia coli, E. faecalis, or P. acnes, albeit with reduced efficiency. In contrast, EF-Tus derived from the NAI003-insensitive Staphylococcus aureus or Streptococcus pyogenes did not bind this compound. These results were confirmed by in vitro studies using a hybrid translation system, which indicated that NAI003 can inhibit most efficiently protein synthesis driven by the P. acnes EF-Tu. P. acnes mutants resistant to NAI003 were isolated by direct plating. With one exception, all analyzed strains carried mutations in the tuf gene, encoding EF-Tu. Because of its selective effect on P. acnes in comparison to resident skin flora, NAI003 represents a promising candidate for the topical treatment of acne, which has already completed a phase 1 clinical study

    Role of the ribosome‐associated protein PY in the cold‐shock response of E scherichia coli

    Get PDF
    Protein Y ( PY ) is an E scherichia coli cold‐shock protein which has been proposed to be responsible for the repression of bulk protein synthesis during cold adaptation. Here, we present in vivo and in vitro data which clarify the role of PY and its mechanism of action. Deletion of yfiA , the gene encoding protein PY , demonstrates that this protein is dispensable for cold adaptation and is not responsible for the shutdown of bulk protein synthesis at the onset of the stress, although it is able to partially inhibit translation. In vitro assays reveal that the extent of PY inhibition changes with different mRNA s and that this inhibition is related to the capacity of PY of binding 30S subunits with a fairly strong association constant, thus stimulating the formation of 70S monomers. Furthermore, our data provide evidence that PY competes with the other ribosomal ligands for the binding to the 30S subunits. Overall these results suggest an alternative model to explain PY function during cold shock and to reconcile the inhibition caused by PY with the active translation observed for some mRNA s during cold shock. E scherichia coli responds to cold stress by entering an acclimation phase during which protein synthesis slows down considerably with the exception of a specific set of genes (cold‐shock genes) whose expression is stimulated. In this article, we have investigated in vivo and in vitro the role of PY , a protein that is associated with the ribosome throughout the cold acclimation phase. Our data indicate that protein PY can affect translation initiation but is not responsible for turning off bulk protein synthesis during the cold stress.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97494/1/mbo368-sup-0001-FigureS1-S3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/97494/2/mbo368.pd

    FAST, a method based on split-GFP for the detection in solution of proteins synthesized in cell-free expression systems

    Get PDF
    ackground: Depression and anxiety are two of the most prevalent and disabling mental disorders worldwide, both in the general population and in outpatient clinical settings. Objective: This study aimed to analyze the psychometric properties of the Patient Health Questionnaire-4 (PHQ-4) based on network analysis metrics. Methods: A total of 911 Paraguayans (23.71% women and 76.29% men; mean age 31.25 years, SD = 10.63), selected by non-probabilistic convenience sampling, participated in the study. Network analysis was used to evaluate the internal structure, reliability, and measurement invariance between men and women. Results: The results revealed that the PHQ-4 is a unidimensional measure through Exploratory Graph Analysis (EGA). Reliability, through structural consistency, identified that 100% of the time, only a single dimension was obtained, and all items remained stable, as they were always replicated within the empirical dimension. The unidimensional structure has shown evidence of configural invariance; therefore, the network structure functioned equally among the different sex groups. Conclusion: The PHQ-4 presented optimal preliminary evidence of validity based on its internal structure, reliability, and invariance between sexes. Therefore, it may be useful as an accurate and brief measure of anxiety and depressive symptoms in the Paraguayan context.Horizon 2020 Framework Programm

    Structure of a 30S pre-initiation complex stalled by GE81112 reveals structural parallels in bacterial and eukaryotic protein synthesis initiation pathways

    Get PDF
    In bacteria, the start site and the reading frame of the messenger RNA are selected by the small ribosomal subunit (30S) when the start codon, typically an AUG, is decoded in the P-site by the initiator tRNA in a process guided and controlled by three initiation factors. This process can be efficiently inhibited by GE81112, a natural tetrapeptide antibiotic that is highly specific toward bacteria. Here GE81112 was used to stabilize the 30S pre-initiation complex and obtain its structure by cryo-electron microscopy. The results obtained reveal the occurrence of changes in both the ribosome conformation and initiator tRNA position that may play a critical role in controlling translational fidelity. Furthermore, the structure highlights similarities with the early steps of initiation in eukaryotes suggesting that shared structural features guide initiation in all kingdoms of life

    Inhibition of translation initiation complex formation by GE81112 unravels a 16S rRNA structural switch involved in P-site decoding

    Get PDF
    In prokaryotic systems, the initiation phase of protein synthesis is governed by the presence of initiation factors that guide the transition of the small ribosomal subunit (30S) from an unlocked preinitiation complex (30S preIC) to a locked initiation complex (30SIC) upon the formation of a correct codon-anticodon interaction in the peptidyl (P) site. Biochemical and structural characterization of GE81112, a translational inhibitor specific for the initiation phase, indicates that the main mechanism of action of this antibiotic is to prevent P-site decoding by stabilizing the anticodon stem loop of the initiator tRNA in a distorted conformation. This distortion stalls initiation in the unlocked 30S preIC state characterized by tighter IF3 binding and a reduced association rate for the 50S subunit. At the structural level we observe that in the presence of GE81112 the h44/h45/h24a interface, which is part of the IF3 binding site and forms ribosomal intersubunit bridges, preferentially adopts a disengaged conformation. Accordingly, the findings reveal that the dynamic equilibrium between the disengaged and engaged conformations of the h44/h45/h24a interface regulates the progression of protein synthesis, acting as a molecular switch that senses and couples the 30S P-site decoding step of translation initiation to the transition from an unlocked preIC to a locked 30SIC state

    Prokaryotic Expression and Functional Verification of Antimicrobial Peptide LRGG

    Get PDF
    The antimicrobial peptide LRGG (LLRLLRRGGRRLLRLL-NH2) was designed and chemically synthesized in a study conducted by Jia et al. Gram-negative bacteria were found to be sensitive to LRGG and exhibited a high therapeutic index. Genetic engineering methods were used to create the prokaryotic fusion expression vector pQE-GFP-LRGG, and the resulting corresponding fusion protein GFP-LRGG was subsequently expressed and purified. The precursor GFP was then removed by TEV proteolysis, and pure LRGG was obtained after another round of purification and endotoxin removal. The prokaryotic-expressed antimicrobial peptide LRGG displays a broad-spectrum antibacterial effect on Gram-negative bacteria, and its minimum inhibitory activity (MIC) against Escherichia coli can reach 2 mu g/mL. Compared to the chemically synthesized LRGG, the prokaryotic-expressed LRGG exhibits similar temperature, pH, salt ion, serum stability, and cell selectivity. Furthermore, prokaryotic-expressed LRGG showed excellent therapeutic effects in both the infection model of cell selectivity and no embryotoxicity in a Galleria mellonella infection model. The mechanism by which LRGG causes bacterial death was found to be the disruption of the Gram-negative cell membrane
    • 

    corecore