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Abstract

Protein Y (PY) is an Escherichia coli cold-shock protein which has been

proposed to be responsible for the repression of bulk protein synthesis during

cold adaptation. Here, we present in vivo and in vitro data which clarify the

role of PY and its mechanism of action. Deletion of yfiA, the gene encoding

protein PY, demonstrates that this protein is dispensable for cold adaptation

and is not responsible for the shutdown of bulk protein synthesis at the onset

of the stress, although it is able to partially inhibit translation. In vitro assays

reveal that the extent of PY inhibition changes with different mRNAs and that

this inhibition is related to the capacity of PY of binding 30S subunits with a

fairly strong association constant, thus stimulating the formation of 70S mono-

mers. Furthermore, our data provide evidence that PY competes with the other

ribosomal ligands for the binding to the 30S subunits. Overall these results

suggest an alternative model to explain PY function during cold shock and to

reconcile the inhibition caused by PY with the active translation observed for

some mRNAs during cold shock.

Introduction

A change in the environmental temperature, a physical

stress that all living organisms experience, is capable of

influencing the rate of many cellular reactions as well as

affecting the conformation, folding, and flexibility of

macromolecules. To survive an abrupt temperature down-

shift (e.g., from 37°C to a temperature below 20°C), Escheri-
chia coli cells transiently stop growing for a period which

can last one to several hours and enter an acclimation phase

during which bulk protein synthesis is drastically repressed

while a set of cold-shock genes is selectively and transiently

expressed (Gualerzi et al. 2003, 2011; Phadtare 2004).

Induction of cold-shock gene expression during the

acclimation phase is mainly regulated by two posttran-

scriptional mechanisms: (i) a drastic stabilization of the

transcripts (Gualerzi et al. 2003) and (ii) the specific

translation of the cold-shock mRNAs (translational bias)

at low temperature (Goldenberg et al. 1997; Giuliodori

et al. 2004). This translational bias is due to both cis-act-

ing elements present in the cold-shock transcripts which

render these mRNAs suitable for the translation in the

cold and to trans-acting factors (Giuliodori et al. 2004,

2007; Giangrossi et al. 2007). Concerning the cis-acting

elements, it has been recently demonstrated that cspA

mRNA, the transcript of the most studied cold-shock

gene of E. coli, acts as an intrinsic sensor of the tempera-

ture downshifts, being able to assume functionally and

structurally different conformations at 37°C or in the cold

(Giuliodori et al. 2010). As for the role played by the

trans-acting factors, the increased levels of IF1 and IF3

during cold adaptation are essential to promote transla-

tion of a select group of cold-shock mRNAs and to coun-

ter the increased tendency of the ribosomal subunits to
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associate in the cold, thus ensuring a sufficient pool of

30S subunits for initiating translation (Giangrossi et al.

2007; Giuliodori et al. 2007).

Protein Y (PY), known also as RaiA or YfiA (Maki

et al. 2000; Agafonov et al. 2001), is one of the least func-

tionally characterized of the cold-shock trans-acting

factors. PY appears in the ribosomal fraction in the first

hour of cold shock, remains ribosome associated through-

out the cold acclimation phase with a PY/ribosome ratio

between 1:10 and 1:3, and is released when growth

resumes (Agafonov et al. 2001). Interestingly, PY associ-

ates with the ribosomes also during stationary phase at

37°C (Maki et al. 2000; Agafonov et al. 2001).

PY binds to the 30S subunit and to the 70S monomer

at the subunit interface with the 50S subunit (Agafonov

et al. 1999). The X-ray diffraction structure of the

PY-ribosome crystal indicates that PY binds the region

overlapping the A and P binding sites of the tRNA, in

close proximity to helix 69 in the 23S rRNA, which is

one of the regions responsible for subunit association

(Vila-Sanjurjo et al. 2004; Polikanov et al. 2012). In

agreement with this finding, it has been demonstrated that

PY inhibits translation, stabilizes the 70S ribosome against

dissociation, and inhibits the binding of the initiator

tRNA to the 70S ribosome at low temperature (Agafonov

et al. 1999; Vila-Sanjurjo et al. 2004).

PY is conserved in several bacterial species and its func-

tional homologs are present also in the plastid of many

plants (Agafonov et al. 1999; Sharma et al. 2010). Never-

theless, PY is the least conserved and least abundant of

the ribosome-associated proteins and it can be considered

as an auxiliary factor expressed only to overcome stress

conditions (Agafonov et al. 1999). In fact, it has been

postulated that this protein could act as a “storing” fac-

tor, sequestering a fraction of the ribosomes as idle 70S

monomers when a lower number of translating ribosome

is required by the cell (Maki et al. 2000; Sharma et al.

2010). Recently, it has been proposed that ribosome-

recycling factor (RRF) and elongation factor G (EF-G)

may be responsible for the PY release from the stabilized

70S monomers and for the subsequent dissociation of the

70S ribosome to 30S and 50S subunits (Sharma et al.

2010), which are then prevented from reassociation by

the concerted activity of IF1 and IF3 (Giangrossi et al.

2007; Giuliodori et al. 2007).

The discovery of PY was greeted with enthusiasm by

the scientific community which postulated that this pro-

tein might be the factor that modulates ribosome activ-

ity as a function of cell stress and transiently represses

the synthesis of non–cold-shock proteins during cold

adaptation (Vila-Sanjurjo et al. 2004; Wilson and Nier-

haus 2004). However, experimental evidence in support

of this hypothesis is lacking. Another open question

concerns the mechanism by which the synthesis of

cold-shock proteins can occur in spite of translation

inhibition by PY. Furthermore, although the PY-induced

inhibition of 30S initiation complex formation has been

hypothesized (Vila-Sanjurjo et al. 2004), this activity has

never been demonstrated.

Thus, aim of this study is to clarify the role of protein

PY during cold shock and to unravel the molecular basis

of the PY-dependent translation inhibition. To establish

whether PY is the factor that inhibits the synthesis of non

–cold-shock proteins at low temperature, we inactivated

the yfiA gene in the E. coli strain MRE600 and compared

the behavior of both wt and mutant strains at 37°C and

during cold shock. Moreover, we compared the patterns

of proteins synthesized in the two strains before and after

cold shock by pulse-chase experiments. The results

obtained indicate that PY is dispensable for cell growth at

both 37°C and low temperature and that this protein is

not responsible for turning off the synthesis of the

non–cold-shock protein during the cold adaptation phase.

However, PY seems to be able to reduce the translation

of at least some mRNAs. To verify this finding, we per-

formed in vitro translational experiments in the presence

of increasing amounts of PY, using a set of cold-shock

and non–cold-shock mRNAs and analyzed the effect of

PY on 30S and 70S initiation complex formation using

various molecular approaches. The present results estab-

lish that PY inhibits translation to different extent

depending upon temperature and mRNA. This activity is

due to the capacity of this protein to bind the 30S sub-

units, thus interfering with the formation of 30S initiation

complexes and simultaneously favoring the association of

the ribosomal subunits to form idle 70S ribosomes.

Experimental Procedures

General preparation

Escherichia coli MRE600 70S ribosomes; S100 postriboso-

mal supernatant; S30 crude extracts; 30S and 50S ribo-

somal subunits; and purified initiation factors IF1, IF2,

and IF3 were prepared as described previously (Giuliodori

et al. 2004, 2007). tRNAfMet was kindly provided by

S. V. Kirillov (Gatchina, Russia) and f[35S]Met-tRNA was

prepared and purified as described (Rodnina et al. 1994;

Brandi et al. 2004).

Strains

Escherichia coli MRE600 (Cammack and Wade 1965; labo-

ratory stock) was used to construct the deletion mutant

MRE600 DyfiA; E. coli JM109 was used for plasmid

amplification (Sambrook and Russell 2001); E. coli BL21
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(DE3)-pLYS was used for protein over-expression and

purification (Johnson et al. 1990).

Knockout construction

The E. coli MRE600DyfiA deletion mutant was obtained

from the wild-type MRE600 strain using the standard

protocol for one-step inactivation of chromosomal genes

(Datsenko and Wanner 2000) with minor modifications.

The kanamycin cassette was amplified from pKD13

(Datsenko and Wanner 2000) plasmid using primers:

5′-ACGGTATGCTGAATTCACCAAGACGGGAAGACAAG
AGGTAAAATTTATGATTCCGGGGATCCGTCGACC-3′
and 5′-CGCGTTGGCGATACACTCAATATAAAGGACTA
CTCTTCTTCAACTTCTTCTGTAGGCTGGAGCTGCTTC

G-3′.
The resulting amplicon was used for the gene disruption

step as described (Datsenko and Wanner 2000). The poly-

merase chain reaction (PCR) verification step on KmR

transformants was carried out with two flanking locus-

specific primers: 5′-TCACACATTTTGACATCAGG-3′ and
5′-AGTGACTTTAGTACAGTACC-3′. The same reaction

was performed to check the loss of resistance gene after

eliminating the antibiotic resistance gene.

Growth curves and viable counts

Growth curves of E. coli MRE600 and MRE600DyfiA were

carried out in Luria-Bertani (LB) medium and in M9

minimal medium (Sambrook and Russell 2001) at 37°C
or during cold shock. To induce cold shock, cultures of

E. coli MRE600 wt and MRE600 DyfiA grown at 37°C
were transferred at 10°C upon reaching OD600 = 0.4.

Growth was monitored by measuring optical density

(OD600) and by assaying colony-forming units on

LB-plates.

Two-dimensional gel electrophoresis
analysis

Cultures of E. coli MRE600 and MRE600DyfiA grown at

37°C till OD600 = 0.6 were transferred to 10°C. Aliquots
of both cultures were taken immediately before or after

60 min of cold shock. The cells were then subjected to a

freeze–thaw and lysozyme procedure (Ron et al. 1966)

and the resulting extracts were fractionated on a sucrose

gradient as previously described (Powers and Noller

1990). The fractions containing 70S were pooled and the

70S ribosomes were pelleted by centrifugation in a Sorvall

M120 at 80 krpm for 2 h in a S80-AT3 rotor. Ribosomal

proteins were obtained from 70S ribosomes by acetic

extraction (Hardy et al. 1969) in the presence of

100 mmol/L MgCl2. Proteins were then precipitated with

two volumes of acetone and dissolved in 100 lL of sample

buffer (1 mmol/L bis-Tris; 60 mmol/L Urea; 10 mmol/L

1,4-dithio-D-threitol (DTT); 0.05% pararosa aniline).

Two-dimensional (2D) gel electrophoresis was performed

with a 4–5 pH gradient for the first dimension and a

15% sodium dodecyl sulfate poly acrylamide gel elctro-

phoresis (SDS-PAGE) as the second dimension, essentially

as described (Subramanian 1974; Mets and Bogorad 1974;

Madjar et al. 1979). The resulting gels were stained with

Comassie blue and then scanned.

De novo protein synthesis after cold shock

Pulse-labeling experiments were performed on cultures

grown in M9 minimal medium (Sambrook and Russell

2001) supplemented with 0.5% glucose and 0.01% yeast

extract. MRE600 wt cells and MRE600 Dyfia cells were

grown to 0.5 A600 and then shifted to 10°C. At the indicated
times following the temperature shift, 1 mL aliquots from

both cultures were pulse-labeled for 30 min with 1 lL of

[35S] Pro-Mix (7 mCi; 3000 Ci mmol, Amersham) and

then chased for 5 min by adding nonradioactive methio-

nine and cysteine to a final concentration of 0.2 mol/L.

Two control samples were also pulse-labeled in the same

way for 10 min at 37°C before the cold shock. After centri-

fugation, each cell pellet was resuspended in 200 lL of

phosphate buffered saline buffer containing 1 mmol/L

DTT and 0.2 mmol/L phenylmethanesulfonylfluoride

(PMSF). The cells were then lysed by sonication and the

resulting cell extracts were cleared by centrifugation. The

total cell extracts thus obtained, normalized for the A600

value of the corresponding cell aliquot, were subjected to

SDS-PAGE at various concentration (7.5%, 10%, 12.5%,

and 15%). The radioactivity incorporated into the proteins

was determined with a GS 250 Molecular Imager (Bio-Rad,

Hercules, CA).

Cloning and mutagenesis of E. coli gene
yfiA

The coding region of E. coli yfiA gene was amplified by

PCR from MRE600 genomic DNA using primers:

5′-CCACGCCATGGCAATGAACATTACCAGCAAAC-3′
and 5′-CGGGATCCCTACTCTTCTTCAACTTCTTC-3′.
The PCR product was gel purified, treated with DpnI,

and cloned into the pETM11 vector (D€ummler et al.

2005) using NcoI and BamHI restriction sites. Escherichia

coli BL21 (DE3)/pLYS was transformed by the resulting

vector pETM11-PY. The pETM11-PY construct was

confirmed by DNA sequencing.

The Val60Cys_yfiA mutant was produced using the

QuikChange Site-Directed Mutagenesis Kit (Agilent Tech-

nologies, Inc., Santa Clara, CA) from Stratagene and the
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pETM11-pY plasmid as DNA template, with the following

mutagenic primers: 5′-CCACTGGCAACCAGACAGCC
GTTAGGTGTATTG-3′ and 5′-CCAAGGCCGTACTCCA
ACTGTAATCAAAAAAGCAA-3′. The resulting construct

pETM11-Val60Cys_PY was sequenced to confirm the

mutation and transferred in E. coli BL21 (DE3)-pLYS by

electroporation.

Purification of PY and PY Val60Cys mutant

The overproduction of protein PY wt or mutant (Val60Cy-

s_PY) was induced by the addition of 1 mmol/L isopropyl-

beta-D-1-thiogalactopyranoside to E. coli BL21 (DE3)-pLYS

cells harboring pETM11-PY or pETM11-Val60Cys_PY,

grown in LBmedium at 37°C to OD600 = 0.4. After transfer-

ring the cultures to 20°C for 12 h, the cells were harvested by

centrifugation and the pellets were resuspended in Buffer A

(25 mmol/L tris-HCl, pH 8.5, 5% glycerol, 100 mmol/L

NaCl, 0.025% Nonidet P40) and stored at �80°C. After
thawing, the cells were diluted in an equal volume of Buffer

B (25 mmol/L tris-HCl, pH 8, 1.3 mol/L NaCl, 5% glycerol,

6 mmol/L b-mercapto-ethanol, 0.1 mmol/L PMSF,

0.1 mmol/L benzamidine), lysed by sonication, and the

resulting cell extracts were cleared by centrifugation. The cell

extracts were subsequently loaded on a nickel-nitrilotriacetic

acid (Ni-NTA) chromatographic column equilibrated in

Buffer C (25 mmol/L tris-HCl, pH 8.0, 700 mmol/L NaCl,

5% glycerol, 6 mmol/L b-mercapto-ethanol, 0.1 mmol/L

PMSF, 0.1 mmol/L benzamidine). The column, initially

washed with the same buffer, was subsequently washed with

Buffer D (25 mmol/L tris-HCl, pH 8.0, 300 mmol/L of

NaCl, 5% glycerol, 20 mmol/L Imidazole, 6 mmol/L

b-mercapto-ethanol, 0.1 mmol/L PMSF, 0.1 mmol/L

benzamidine). Protein PY was eluted from the column with

Buffer E (25 mmol/L tris-HCl, pH 8.0, 300 mmol/L of

NaCl, 5% glycerol, 300 mmol/L imidazole, 6 mmol/L

b-mercapto-ethanol, 0.1 mmol/L PMSF, 0.1 mmol/L benz-

amidine), and the fractions containing protein PY were

pooled and dialyzed against Buffer F (25 mmol/L tris-HCl,

pH 8.0, 100 mmol/L NaCl, 5% glycerol, 6 mmol/L b-merca-

pto-ethanol, 0.1 mmol/L PMSF, 0.1 mmol/L benzamidine).

To remove the his-Tag sequence from PY protein, 8.4 mg of

purified PY was then incubated for 4 h with 0.5 mg of the

His-Tag TEV protease (Kapust et al. 2002). At the end of the

incubation, the concentration of NaCl was increased to

300 mmol/L and the reaction mixture containing the

cleaved PY protein was loaded on a Ni-NTA column equili-

brated in Buffer G (25 mmol/L tris-HCl, pH 8.0, 300 mmol/

L NaCl, 5% glycerol, 6 mmol/L b-mercapto-ethanol,

0.1 mmol/L PMSF, 0.1 mmol/L benzamidine). The flow-

through, containing PY with no His-tag, was concentrated

by centrifugation in Amicon ultra-4 centrifugal filter devices

at 4 krpm for 40 min at 4°C. Concentrated protein PY was

dialysed overnight at 4°C against Buffer H (20 mmol/L

tris-HCl, pH 7.1, 100 mmol/L NH4Cl, 1 mmol/L MgCl2,

5% glycerol, 0.1 mmol/L EDTA, 6 mmol/L b-mercapto-

ethanol) and stored at�80°C in small aliquots.

In vitro transcription and mRNA preparation

The templates used for the in vitro synthesis of the

various mRNAs were plasmids derived from pTZ18R and

pTZ19R (Pharmacia, GE Healthcare Biosciences, Pitts-

burgh, PA) or pUT7 (Serganov et al. 1997), propagated

in and purified from E. coli JM109. Namely, these plas-

mids were pUTcspA (Giuliodori et al. 2010), pUT7cspD

(Spedalieri et al., unpubl. ms.), pUT7cspB, puT7cspE,

pUT7cspG, pUT7cspI (this study), pTZ19hupA,

pTZ19hupB (Giangrossi et al. 2001), pTZ18P1infA,

pTZ18P2infA (Giangrossi et al. 2007), and pSELECThns

(Spurio et al. 1997).

Preparative transcription of the mRNAs with T7 RNA

polymerase and mRNA purification were carried out

essentially as described (Brandi et al. 1996).

In vitro translation tests

Before use, each mRNA was denatured at 90°C for 1 min

in RNase-free H2O and renatured for 15 min at 15°C or

37°C in 20 mmol/L 4-(2-hydroxyethyl)-1-piperazineetha-

nesulfonic acid-KOH (pH 7.5), 10 mmol/L MgCl2,

50 mmol/L KCl. In vitro translation tests were carried out

essentially as described (Giuliodori et al. 2004, 2007) in

8 mmol/L Mg acetate. The reaction mixture also contained

protein PY in the amounts indicated for each experiment.

30S and 70S initiation complex formation

Each reaction mixture (30 lL) contained 20 mmol/L tris-

HCl, pH 7.7, 80 mmol/L NH4Cl, 7 mmol/L Mg acetate,

2 mmol/L DTT, 0.5 mmol/L GTP, 1 lmol/L f[35S]

Met-tRNA, 1 lmol/L mRNAs, 0.5 lmol/L IF1, 0.5 lmol/

L IF2, 1 lmol/L IF3, and 0.5 lmol/L of E. coli 30S ribo-

somal subunit or a 1:1 stoichiometric mixture of 30S and

50S subunits. Protein PY was added to the reaction

mixtures at the indicated PY/ribosomal particles ratios.

After 30 min of incubation at 15°C, the amounts of ribo-

some-bound f[35S]Met-tRNA was determined by filtering

each mixture through nitrocellulose disks.

Fluorescent labeling of Val60Cys_PY

The PYVal60Cys mutant was labeled with the fluorescent

dye Alexa555 essentially as described in Milon et al.

(2007). The excess unincorporated fluorophore was sepa-

rated from the labeled factor (PY_Alexa555) by extensive

296 ª 2013 The Authors. Published by Blackwell Publishing Ltd.

Role of PY Revised F. Di Pietro et al.



centrifugation in Amicon ultra-4 centrifugal filter devices

(cut off 10 K) at 4 krpm, 4°C.

Rapid kinetic measurements

All experiments were carried out in 10 mmol/L tris-HCl,

pH 7.7, 7 mmol/L Mg acetate, 60 mmol/L NH4Cl in a

Stopped-flow apparatus Kintek SF-2004 (KinTek Corp.,

Austin, TX) by mixing at 15°C equal volumes (20 lL) of

reactants present in syringe A or syringe B. The final con-

centration of the molecules used in the various experi-

ments is indicated in the figure legends. Curves were

fitted with second-order equation using GraphPad Prism

software. In a single experiment, 1000 data points were

acquired, usually in logarithmic sampling mode. Each

trace is the average of at least 10 different shots. The fluo-

rescence and light scattering values detected at time = 0

were subtracted from each of the 1000 point which con-

stitute each trace.

Binding of PY to naked 30S, 50S, and 70S ribosomes

was followed by fluorescent change in PY labeled with

Alexa555. Syringe A contained PY_Alexa555, while syringe

B contained the 30S, the 50S, or the 70S tight coupled

ribosomes. For the release assays, 30S-PY_Alexa555

complexes were rapidly diluted with an equal volume of

reaction buffer. For both types of experiments, fluorescence

excitation was performed at 552 nm and output moni-

tored using a KV590 nm filter.

Inhibition of 30S initiation complex formation by PY

was followed by fluorescence resonance energy transfer

(FRET) between fMet-tRNA_fluo (donor) and IF3 labeled

with ALEXA 555 (acceptor), prepared as described (Milon

et al. 2007). Syringe A contained fMet-tRNA_fluo, IF2,

IF1, IF3_ALEXA 555, GTP; syringe B contained 30S ribo-

somal subunits, GTP and, when required, PY. Excitation

was at 465 nm and output monitored using a KV590 nm

filter.

For the Light Scattering experiments, 30S subunits with

or without increasing amounts of PY (syringe A) and 50S

ribosomal subunits (syringe B) were allowed to mix in

10 mmol/L tris-HCl pH 7.7, 5 mmol/L Mg acetate,

60 mmol/L NH4Cl; excitation was at 436 nm and output

was monitored with no filtering.

Results

The yfiA gene is dispensable for adaptation
at low temperature

A YfiA deletion mutant was generated in E. coli strain

MRE600 as described in Experimental Procedures. The

deletion of the gene encoding protein PY from the E. coli

chromosome was assessed by PCR, as shown in Figure

S1A. The mutant strain was also screened for the lack of

expression of protein PY by comparing the 2D electro-

phoretic migration patterns of the proteins extracted from

70S ribosomes purified from wt and mutant cells grown

at 37°C or subjected to 60 min of cold shock (Fig. S1B).

In agreement with published data (Agafonov et al. 2001),

the spot corresponding to protein PY appeared only in

the wt MRE600 strain upon cold shock.

The growth curves of wt and DyfiA strains at 37°C in

LB (Fig. 1A) or M9 minimal medium (not shown) show

that the two strains have the same doubling time during

the exponential phase and level off in the same way when

approaching the stationary phase, in agreement with pre-

viously reported data (Ueta et al. 2005).

The cold-shock analysis of wt and DyfiA strains was

performed in LB medium by rapidly chilling at 15°C
cultures grown at 37°C to 0.4 OD600. It can be seen

(Fig. 1B) that the optical density and the number of

colony-forming cells of both cell cultures started to

increase after about 4 h of cold shock and reached the

maximum after 40 h. More importantly, no difference

was observed between wild-type and DyfiA mutant growth

(a)

(b)

Figure 1. Growth and viability of MRE600 wt and MRE600 DyfiA. (A)

Growth curves of Escherichia coli MRE600 wt (□) and DyfiA cells (D)

incubated at 37°C in LB medium. (B) Growth curves of wt and DyfiA

strains during cold shock (10°C), monitored by optical density (left

axis, MRE600 wt □; MRE600 DyfiA D) and number of colony-forming

unit (right axis, MRE600 wt ○; MRE600 DyfiA ∇).
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curves upon cold shock. A similar result was obtained

when studying DyfiA mutants prepared from other E. coli

strains (W3110, C-1a, and BW25113; not shown).

PY affects gene expression but is not
responsible for the reduction of bulk
protein synthesis at the onset of the cold
stress

To compare protein expression in E. coli MRE600 wt and

MRE600 DyfiA, these strains were grown at 37°C in M9

minimal medium and shifted to 10°C when OD600 = 0.8.

At the indicated times (Fig. 2), an aliquot of each culture

was labeled with [35S] pro-mix and then chased with

nonradioactive Met and Cys. Samples of each aliquot,

corresponding to equal OD units, were subjected to SDS-

PAGE analysis at 7%, 10%, and 15% acrylamide concen-

trations and the radioactivity incorporated into proteins

was quantified by exposure in a molecular imager.

As seen in Figure 2, the intensity of the bands, which

is proportional to the amount of protein synthesized in

each labeling time window, is drastically reduced in both

wt and mutant strains for the majority of the proteins

immediately after the temperature downshift and starts

to increase again only ffi3 h later. This result indicates

that PY is not responsible for the block of protein syn-

thesis during cold shock, at variance with what had been

suggested (Vila-Sanjurjo et al. 2004). However, a quanti-

tative analysis of the gels (Fig. S2) seems to point out a

difference in the behavior of the two strains. In fact, the

reduction of bulk protein synthesis is moderately stron-

ger in the wt than in the deletion mutant, and the

resumption of translation at the exit of the adaptation

phase seems to be more rapid and efficient in the wt

strain than in DyfiA. Interestingly, also the induction of

some cold-shock protein is different in the two strains.

For instance, in the deletion strain the band indicated

by the gray arrow (Figs. 2 and S2) appears immediately

after cold shock and disappears rapidly, whereas its

expression in the wt strain is delayed and lasts longer.

On the other hand, induction of CspA (black arrow)

and other unidentified cold-shock proteins is similar in

the two types of cells (Figs. 2 and S2).

Overall, these data suggest that PY could partially affect

bulk translation and influence the timing of the cold-

shock induction of some proteins. If correct, this hypoth-

esis would reconcile the inhibition of translation caused

by PY observed in vitro by several groups (Agafonov

et al. 2001; Vila-Sanjurjo et al. 2004; Sharma et al. 2010)

with the increased translational activity described for

some mRNAs during cold shock (Gualerzi et al. 2003;

Giuliodori et al. 2004).

PY inhibition depends on temperature and
type of mRNA

The results of the experiments described in the above sec-

tion suggest that protein PY may be able to influence to

Figure 2. De novo translation following cold shock in the wt and DyfiA strains. Protein synthesis of Escherichia coli MRE600 wt and MRE600

DyfiA was compared by pulse-chase experiments performed immediately before cold shock (time 0) or at different time intervals after a

temperature shift from 37°C to 10°C. To highlight possible differences, the same samples were run in gels containing three different

concentrations of polyacrylamide, as indicated. The black asterisk specifies the migration of the same protein band in the various gels. The black

and the gray arrows indicate the bands corresponding to CspA and an unidentified cold-shock protein, respectively. Further details are given in

Experimental Procedures.
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different extents the synthesis of different proteins. To

verify this hypothesis, we performed in vitro translation

tests using various mRNAs of different classes, namely

cold-shock (cs), cold-tolerant (ct), and non–cold-shock
(non-cs) mRNAs. Among the first class, we selected cspA

mRNA and hns, encoding the most abundant cold-shock

protein of E. coli CspA (Goldstein et al. 1990) and the

nucleoid-associated protein H-NS (La Teana et al. 1991),

respectively. Furthermore, we tested two other cs tran-

scripts, cspI and cspG mRNAs, belonging to the E. coli csp

family (Yamanaka et al. 1998). P1infA and P2infA mRNAs

are two alternative transcripts encoding initiation factor

IF1: P1infA mRNA is preferentially produced and trans-

lated during cold shock, while P2infA mRNA can be con-

sidered a non-cs transcript, being mainly transcribed at

37°C (Giangrossi et al. 2007). HupA and cspD mRNAs rep-

resent two other typical non-cs transcripts, the first encod-

ing the a subunit of the nucleoid-associated protein HU

(Giangrossi et al. 2002) and the second encoding CspD, a

protein that, unlike its paralog CspA, is expressed only at

37°C (Yamanaka and Inouye 1997). As ct mRNAs, we

selected HupB and cspE mRNAs encoding the b subunit of

HU (Giangrossi et al. 2002) and protein CspE (Xia et al.

2001), respectively, as they are synthesized at both low and

high temperature. Finally, the 027-C mRNA is the tran-

script of a semi-synthetic gene designed for the optimi-

zation of in vitro translation experiments to be performed

at 37°C with various organisms (Brandi et al. 2007).

Translation of such mRNAs was studied in the presence

of increasing amounts of purified PY, using crude cellular

extracts prepared from cells not subjected to cold shock

(control S30) or subjected to 120 min of cold shock

(csS30). These experiments were carried out: (i) at 37°C
with control S30 to reproduce the milieu existing when

cells grow under physiological conditions; (ii) at 15°C
with control S30 to reproduce the conditions existing at

the onset of the cold shock when translation occurs in the

absence of the cs trans-acting factors, which are expressed

only at a later stage of cold adaptation (Brandi et al. 1999;

Giuliodori et al. 2004); (iii) at 15°C with csS30, when all

the cs trans-acting factors are present. The points of each

experiment were normalized by taking the amount of pro-

tein synthesized in the absence of PY as 100%.

The results show that at 15°C, PY inhibited to different

extents the translation of all mRNAs examined, with both

control S30 (Fig. 3A) and csS30 (Fig. 3B), whereas it did

not affect translation at 37°C (not shown), in agreement

with previous results (Vila-Sanjurjo et al. 2004). The inhi-

bition observed with the control S30 seems to affect

primarily translation of the semi-synthetic 027-C mRNA

and cspG mRNA (45% inhibition), whereas translation of

the other mRNAs was either marginally affected (20–30%
inhibition) or affected only at the highest concentration

of PY (cspA, hupB, and P1infA mRNAs). The inhibition

observed in the presence of the csS30 extract seems over-

all more pronounced (Fig. 3B) than that with the control

S30 extract. In fact, under these conditions, translation of

most mRNAs was inhibited by PY between 40% and

50%, with the exception of 027-C mRNA (80% inhibi-

tion) and cspA mRNA, which was repressed only at the

highest PY concentration. The fact that inhibition was

found to be somewhat stronger with the cold-shock cellular

extract could be explained either by the presence of

endogenous PY associated with the cs ribosomes or by

the presence of other unidentified cs factors capable of

reinforcing the inhibitory activity of this protein.

Taken together, these results demonstrate that PY

reduces translation in a temperature- and mRNA-depen-

dent manner. This activity is rather modest under the

conditions tested, in agreement with the in vivo data

which do not support a central regulative role of protein

PY during cold stress.

PY inhibits mainly the initiation phase of
translation

Previously published data suggest that PY may inhibit

two steps of the translation process, namely initiation

(Vila-Sanjurjo et al. 2004) and elongation (Agafonov

et al. 2001). To further clarify which translational step is

affected by PY, translation of the various mRNAs was

(a) (b)

Figure 3. Effect of PY on the translation of various mRNAs at 15°C.

Translation of cold-shock, cold-tolerant, and non–cold shock mRNAs

was performed in 30 lL reaction with 7 lL of control S30 (A) or cold

shock S30 (B) programed with 30 pmoles each of the indicated

mRNAs (cspA mRNA , hupB mRNA , P1infA mRNA , cspE mRNA

, P2infA mRNA , cspD mRNA , cspI mRNA , hupA mRNA ,

cspG mRNA , 027-C mRNA ) under the conditions described in

Experimental Procedures. Furthermore, each reaction mixture

contained the amounts of PY indicated in the abscissa. Incubation

was performed for 120 min at 15°C. The results are presented as

percent of the level of product obtained in the absence of PY set at

100%.
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tested at low temperature in the presence of increasing

amounts of PY using 70S ribosomes and S100 postriboso-

mal supernatants prepared from control S30. Subse-

quently, the same 70S ribosomes were dissociated into

30S and 50S ribosomal subunits to study the formation

of 70S initiation complexes (70S IC) at 15°C. In these

experiments, the 30S subunits were incubated with IF1,

IF2, IF3, mRNA, f[35S]Met-tRNA, and 50S subunits in

the presence of increasing concentrations of PY and the

amount of f[35S]Met-tRNA bound in the 70S IC was

determined by nitrocellulose filtration.

The effect of PY on both the entire translational pro-

cess and the single initiation step is shown in Figure 4.

The results obtained confirm the mRNA-dependent inhi-

bition by PY (compare cspA with 027-C or cspD mRNAs)

and, in addition, indicate that this inhibition takes place

mainly at the level of initiation complex formation. In

fact, in most of the cases the curves describing the effect

of PY on translation (closed symbol) and 70S IC forma-

tion (open symbol) are perfectly (cspA, 027-C, cspD,

P1infA, P2infA, hupB mRNAs) or almost perfectly (hupA

and cspE mRNAs) superimposable. On the other hand,

the behavior of cspE, cspG, hns, and cspI mRNAs is differ-

ent from that of the other transcripts; in these cases, it

can be hypothesized that further inhibition by PY occurs

at the level of elongation. It remains to be elucidated why

and how PY could affect the translation elongation step

of only some and not other mRNAs.

PY binds preferentially to the 30S subunits
and increases the association rate of the
ribosomal subunits

To understand the mechanism of action of PY, binding

of this protein to the ribosomal subunits and to the 70S

ribosome was studied at 15°C by monitoring the fluores-

cence change of an engineered PY in which the native

Valine in position 60 was replaced by a Cysteine (Val60-

Figure 4. Comparison between in vitro protein synthesis and 70S initiation complexes formation. All reactions were carried out at 15°C as a

function of the increasing PY/ribosome ratio indicated in the abscissa. The translation tests (■) were performed in 30 lL reaction with 30 pmoles

of high salt washed 70S ribosomes, 15 pmoles of IF1, IF2, IF3, 2 lL of S100 postribosomal supernatant, and 30 pmoles of the indicated mRNAs.

The 70S IC (&), programed with the indicated mRNAs, were prepared under the conditions described in Experimental Procedures. The results of

the translation tests and the filter binding assays are presented as percent of the amount of protein synthesized in the absence of PY and of the

level of f[35S]Met-tRNA bound in the absence of PY, set at 100%. The amount of radioactivity remaining on the filters in the absence of mRNA

was taken as representing the background and subtracted from each point.
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Cys_PY) to allow the labeling of the protein with fluoro-

phore Alexa555 (PY_Alexa555). Control experiments

showed that Val60Cys_PY has an activity comparable to

the native PY (data not shown) and that an increase in

fluorescence can be observed only when the PY_Alexa555

is mixed with the ribosome (Fig. 5A).

As the experimental curves obtained by mixing PY with

the 30S subunit, the 50S or the 70S ribosome (Fig. 5A)

can be fitted with the function Y = A0 + A1 9 exp

(�kapp1 9 x) + A2 9 exp (�kapp2 9 x), a two-step binding

of PY to all macromolecules tested may be hypothesized.

In the above mentioned equation, kapp1 and kapp2 refer to

the apparent rate constants of the first and second phase

and A1 and A2 to the respective amplitudes.

To extrapolate the association (kon) and dissociation (koff)

rate constants of the binding reactions, the values of kapp1
and kapp2 were determined as a function of increasing 30S

and 50S subunit concentrations (Fig. 5B and C, respectively)

and plotted (Fig. 5D). This approach yielded kon1 = 12.1

� 2.1 lmol/L per sec and koff1 = 4.0 � 2.1 sec�1 for the

binding to the 30S subunits (Fig. 5D, squares), and

kon1 = 1.2 � 0.6 lmol/L per sec and koff1 = 6.5 � 0.8 sec�1

for the binding to the 50S subunits (Fig. 5D, circles),

whereas the values of kapp2 (ffi0.3 s�1 for both 30S and 50S)

were shown to be concentration independent (Fig. S3A).

This outcome suggests that the second phase that follows the

first binding step likely corresponds to a slow rearrangement

of PY on the ribosomal subunits.

To calculate the koff2, we examined the fluorescence

changes resulting from the rapid dilution of the

30S-PY_ALEXA555 complex and the 50S-PY_ALEXA555

complex (Fig. S3B). As kapp1 >> kapp2, we can assume

kapp2 = kon2 + koff2 and derive kon2 ffi0.23 knowing that

the calculated koff2 is ffi0.07 sec�1 for both reactions.

From the rate constants, the dissociation constants of the

two phases (kd1 and kd2) can be calculated, which in turn

can be used to derive the dissociation constant of the

binding reactions (kd = kd1 9 kd2), corresponding to

83 nmol/L for 30S-PY and 1.26 lmol/L for 50S-PY.

In conclusion, these experiments show that PY binds

rapidly and tightly to the 30S ribosomal subunits and

very slowly and weakly to the 50S subunits. As for the

binding to the 70S ribosome, it probably occurs with an

intermediate affinity.

Finally, to determine whether the PY binding to the

30S subunits is reflected in a change in the association

(a) (b) (c)

(d) (e)

Figure 5. Binding of PY to the 30S, 50S, and 70S ribosome and stimulation of subunit association. (A) Time course of PY_Alexa555 binding to

30S subunits, 50S subunits, or 70S tight coupled ribosomes. The reaction was performed at 15°C in the stopped-flow apparatus by mixing

0.1 lmol/L PY_Alexa555 with 0.5 lmol/L 30S, 50S, or 70S ribosomes. Control measurement was performed by mixing the fluorescently labeled

protein with the reaction buffer. (B) Time course of 0.1 lmol/L PY_Alexa555 binding to 0.25, 0.5, 1, and 1.5 lmol/L of 30S subunits. (C) Time

course of 0.1 lmol/L PY_Alexa555 binding to 0.5, 1, 1.5, and 2 lmol/L of 50S subunits. (D) Concentration dependence of kapp1 from the binding

of PY to the 30S subunits (■) or the 50S subunits (●). The y-axis intercept gives the value of the backward rate constant koff, while the slope of

the lines corresponds to the forward rate constant kon of the reactions. Standard deviations were calculated from at least 10 different time

courses. (E) Association of 30S and 50S ribosomal subunits studied by light scattering. 30S subunits (0.1 lmol/L) and 50S subunits (0.1 lmol/L)

were rapidly mixed in the stopped-flow instruments at 15°C in the absence (tracing 1) or in the presence of 0.1 lmol/L (tracing 2), 0.2 lmol/L

(tracing 3), 0.5 lmol/L (tracing 4), and 1 lmol/L (tracing 5) of protein PY. Further details are given in Experimental Procedures.
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rate of the small and large subunits, formation of idle 70S

ribosomes was studied following the increase in light scat-

tering at 15°C. The result of the experiment clearly shows

that PY accelerates the kinetics of 70S ribosome forma-

tion about two times (Fig. 5E).

PY influences the formation of the 30S
initiation complex

To further clarify the reason for the PY-dependent inhibi-

tion of translation initiation, formation of the initiation

complexes was tested by changing the order in which

protein PY was added to the reaction mixture. The first set

of experiments was performed at 15°C under the conditions

in which PY inhibition in the translational tests was stron-

ger, that is with cspG mRNA and 027-C mRNA. Increasing

amounts of protein PY were added to the reaction mix-

tures either simultaneously with IF1, IF2, IF3, mRNA,

f[35S]Met-tRNA, 30S and 50S subunits or after the same

components were preincubated for 15 min at 15°C to

preform 70S initiation complexes. Our results (Fig. 6A)

demonstrate that the protein inhibits the reaction only if

added before the 70S initiation complexes are formed.

Therefore, PY cannot destabilize the f[35S]Met-tRNA once

this is correctly positioned in the 70S ribosome.

In another series of experiments (Fig. 6B), PY activity

was investigated using cspA mRNA as template. With this

transcript, the 70S complex was only slightly inhibited

(20%) when formed in the presence of PY (closed circles),

whereas it was strongly inhibited (>80%) when PY was

mixed with the 30S and 50S subunits before the addition of

IFs and mRNA (open circles). The same experiment was

repeated also in the absence of the 50S subunits (Fig. 6B).

Also in this case, PY did not influence the reaction when

added to the mixture with the other components (closed

triangles), whereas it strongly inhibited the 30S IC forma-

tion when prebound to the 30S subunits (open triangles).

These results suggest that protein PY is able to bind to

the 30S ribosomal subunit but not to the 30S initiation

complex and that, once bound, it affects the binding of

the other ribosomal ligands. To test this hypothesis, the

effect of PY on the kinetics of fMet-tRNA and IFs binding

to the 30S subunits was studied by fluorescence stopped-

flow analysis (Fig. 7A) making use of the FRET signal

between fMet-tRNA_fluo as donor and IF3_ALEXA555 as

acceptor (Milon et al. 2007). In this experiment, syringe A

contained the 30S ribosomal subunit in the presence or in

the absence of PY, while syringe B contained fMet-tRNA_-

fluo, IF1, IF2-GTP, and IF3_Alexa555. Our data indicate

that the presence of PY slows down the binding of fMet-

tRNA and IFs to the 30S subunit about two times.

To confirm the result of these experiments, we

performed in vitro translational tests (Fig. 7B) at 15°C

and 37°C using cspA mRNA, 30S and 50S ribosomal

subunits, IFs, and S100 postribosomal supernatant. Again,

a strong inhibition (ffi80% and ffi40% at a PY/30S subunit

ratio of 2:1) was observed when protein PY was prebound

to the 30S subunits, before the other components were

added. On the other hand, if PY was added to the reaction

after preincubating for 15 min cspA mRNA, 30S subunit,

IFs, and S100 postribosomal supernatant, inhibition was

reduced (20% inhibition at 15°C and <10% inhibition at

37°C). Note that the stronger inhibition at 15°C than at

37°C confirms that this protein is able to affect translation

mainly at low temperature.

The scarce inhibition observed when PY is not pre-

bound to the 30S subunits probably implies that this pro-

tein does not compete efficiently with the other ligands

(IFs, mRNA, and fMet-tRNA) for the binding to the 30S.

To verify our supposition, the fluorescence change in

PY_Alexa555 was monitored at 15°C in the presence of

various combinations of ribosomal ligands prebound to

the 30S subunit (Fig. 7C). All time courses recorded have

two exponential phases and the rate of PY association did

not change with any condition tested. However, the

(a) (b)

Figure 6. 30S and 70S initiation complexes formation in the

presence of PY. The initiation complexes were formed at 15°C as

described in Experimental Procedures with cspG mRNA and 027-C

mRNA (A) or with cspA mRNA (B) as a function of the increasing PY/

30S ratios indicated in the abscissa. The results of the assays are

presented as percentages, setting the level of initiation complex

formed in the absence of PY to 100%. (A) PY was added to the

reaction mixture either simultaneously with IF1, IF2, IF3, mRNA, f[35S]

Met-tRNA, 30S and 50S subunits (cspG mRNA D, 027-C mRNA □) or
after the same components were incubated for 15 min at 15°C to

preform 70S initiation complexes (cspG mRNA ▲, 027-C mRNA ■).
(B) The indicated amount of PY was either prebound to the 30S (▽)
and the 30S + 50S subunits (○) for 15 min before the addition of IF1,

IF2, IF3, cspA mRNA, f[35S]Met-tRNA or added simultaneously with

the other components to the reaction mixture containing the 30S

subunits (▼) or the 30S + 50S subunits (●). The amount of

radioactivity remaining on the filters in the absence of mRNA was

taken as representing the background and subtracted from each

point.
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amplitude of the curves differs manifestly depending on

the ligand(s) bound to the 30S. In fact, while the maxi-

mum amplitude of the fluorescence change was ffi0.08

with the 30S subunit alone, it slightly increased to ffi0.10

with IF1-30S and almost halved with the 30S-IFs, the

30S-mRNA-IFs complex, and the 30S IC. In the presence

of these ligands the fluorescence increase, which is

reduced probably because of the incapacity of PY to bind

complete or almost complete 30S IC, likely corresponds

to the binding of PY to free 30S subunits, which are

expected to be quite abundant at 15°C.

Discussion

Previous studies have shown that one of the main mecha-

nisms by which cold-stressed cells attain an increased

expression of the cold-shock genes is by a modification of

the translational apparatus that leads to the selective stim-

ulation of cold-shock mRNA translation and to the

repression of “non–cold-shock” gene expression at low

temperature (Brandi et al. 1996; Goldenberg et al. 1997;

Giuliodori et al. 2004). It has been postulated that PY

could be responsible for the translational repression at the

onset of cold adaptation (Agafonov et al. 2001; Vila-

Sanjurjo et al. 2004). Thus, understanding the role and

function of PY represents a key step in understanding the

mechanism responsible for the reprogramming of gene

expression after cold shock. In this study, by comparing

the cold-shock response in a wt E. coli strain (MRE600)

and its isogenic strain lacking the gene encoding for pro-

tein PY (yfiA) (MRE600 DyfiA), we demonstrate that nei-

ther the recovery from the cold stress (Fig. 1) nor the

reduction in protein synthesis immediately after the shift

to 10°C (Fig. 2) depends on PY. Therefore, in contrast to

the previous claims (Agafonov et al. 2001; Vila-Sanjurjo

et al. 2004), our data demonstrate that protein PY does

not play a relevant role after cold stress and is not

responsible for the shutdown of bulk translation at the

onset of the cold shock; this event must be due to other

molecular mechanisms, for example a reduction in the

capacity of the ribosome to initiate protein synthesis. In

fact, initiation is the stage of translation in which most of

the regulatory events takes place. The correct codon–anti-
codon interaction and recognition of the mRNA transla-

tion initiation region (TIR) are crucial steps of initiation

that may be strongly affected by the secondary structures

of the mRNAs in terms of kinetics and efficiency (de Smit

and van Duin 2003; Marzi et al. 2007). As low tempera-

ture can stabilize alternative RNA secondary structures

(Giuliodori et al. 2010), we may speculate that the drastic

reduction in bulk translation could be due, at least in

part, to unfavorable mRNA structures that impair transla-

tion. This is probably one of the reasons for the stringent

requirement of RNA chaperones and helicases during cold

shock (Gualerzi et al. 2003). Moreover, the increased level

of initiation factor IF3 during cold shock may further

reduce the synthesis of the non–cold-shock proteins, dis-

criminating against the formation of productive 70S initi-

ation complexes programmed with these types of

transcripts (Giuliodori et al. 2007).

(a) (b) (c)

Figure 7. PY influences the formation of the 30S initiation complex. (A) Binding of IFs and fMet-tRNA to the 30S subunit was studied at 15°C by

monitoring the FRET signal between fMet-tRNA_fluo and IF3_Alexa555 in the absence (black) or in the presence (gray) of PY. Syringe A contained

0.4 lmol/L fMet-tRNA_fluo, 0.4 lmol/L IF2, 0.4 lmol/L IF1, 0.4 lmol/L IF3_ALEXA 555, 0.5 mmol/L GTP; syringe B contained 0.2 lmol/L of 30S

ribosomal subunits, 0.5 mmol/L GTP, and 2 lmol/L PY. (B) In vitro translation of cspA mRNA at 15°C (squares) and at 37°C (circles) was carried

out as a function of the increasing PY/30S ratios indicated in the abscissa. At both temperatures, protein PY was either added to preformed 30S

IC (■,●) prepared as described in Experimental Procedures or incubated with the 30S for 15 min before the addition of cspA mRNA, IF1, IF2, IF3,

and f[35S]Met-tRNA (□,○). Elongation of the 30S IC thus formed was carried out in 30 lL reaction by adding the 50S subunits, 2 lL of the S100

postribosomal supernatant, 0.5 mmol/L ATP, 0.2 mmol/L GTP, 0.025 mg/mL pyruvate kinase, 0.2 mmol/L PEP, and 0.2 mmol/L amino acid mix.

(C) The interaction of PY_Alexa555 (0.1 lmol/L) with the 30S subunit, with various combinations of prebound ribosomal ligands, was monitored

at 15°C in the stopped-flow instrument. Tracing 1: 0.1 lmol/L 30S subunit alone; tracing 2: 30S subunit (0.1 lmol/L) preincubated with IF1

(1 lmol/L); tracing 3: 30S subunit (0.1 lmol/L) preincubated with IFs (0.2 lmol/L) and GTP (0.5 mmol/L); tracing 4: 30S subunit (0.1 lmol/L)

preincubated with IFs (0.2 lmol/L), GTP (0.5 mmol/L), and cspE mRNA (0.2 lmol/L); tracing 5: 30S IC prepared by mixing 30S subunit (0.1 lmol/

L), IFs (0.2 lmol/L), GTP (0.5 mmol/L), cspE mRNA (0.2 lmol/L), and fMet-tRNA (0.2 lmol/L). Further details are given in the text and in

Experimental Procedures.
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The fact that PY does not act as a general inhibitor of

the protein synthesis in vivo raises the questions of

whether this protein is able to reduce the expression of at

least some specific protein and what is the mechanism

which allows the cold-shock mRNAs to bypass this inhibi-

tion. Quantitative analysis of the bands which correspond

to the proteins de novo synthesized after cold shock in the

cells (Fig. S2) seems to indicate that PY could indeed par-

tially diminish bulk translation and influence the timing of

cold-shock induction of some proteins. The tests carried

out in this study further demonstrate that at low tempera-

ture PY is able to reduce translation of some mRNAs

(Fig. 3A and B). However, the extent of inhibition is rather

modest, in agreement with the in vivo data, and do not

support a central role of protein PY during cold stress.

Although translation of cold-shock mRNAs is also affected,

translation of non–cold-shock mRNAs seems to be more

susceptible to the presence of PY, in particular under the

conditions mimicking the cellular milieu existing immedi-

ately after the temperature downshift. Finally, as transla-

tion of cspA mRNA is basically insensitive to the presence

of PY, both in vivo and in vitro, we can conclude that this

protein does not hinder the accumulation of the main

cold-shock protein of E. coli.

Vila-Sanjurjo et al. (2004) have shown that PY occupies

the P site of the ribosome and inhibits the mRNA-depen-

dent binding of fMet-tRNA when preincubated with the

70S ribosome. As PY stabilizes 70S ribosomes against

dissociation (Agafonov et al. 2001; Vila-Sanjurjo et al.

2004), and bacteria commonly require free 30S and 50S

subunits to initiate protein synthesis (Brandi et al. 2008),

it remained to be elucidated whether the inhibition of

fMet-tRNA binding was caused indirectly by PY-induced

stabilization of the 70S ribosomes or directly by PY

blockage of 30S initiation complex formation.

The present results show that PY affects directly the

initiation of translation at low temperature (Fig. 4). In

fact, the stopped-flow experiments demonstrate that PY

binds strongly to and dissociate very slowly from the 30S

ribosomal subunit (Fig. 5A–D) in agreement with the

finding of Agafonov et al. (1999) who studied the associa-

tion of PY with the 30S subunit and the 70S ribosome by

an ultrafiltration binding test. Once bound, PY sequesters

the 30S and 50S subunits by stimulating their association

in idle 70S monomers (Fig. 5E), thereby diminishing the

number of ribosomal subunits able to participate in the

formation of 70S initiation complexes (Fig. 6B). However,

PY cannot destabilize the fMet-tRNA once this is cor-

rectly positioned in the 70S IC (Fig. 6A).

Agafonov et al. (2001) concluded from their analysis

that the main stage of translation inhibited by PY is the

aminoacyl-tRNA binding during elongation. Our results

confirm that PY has an effect also on the translation

elongation process, at least with some mRNAs (Fig. 4),

but do not support the preferential inhibition of this

step.

The fact that the extent of PY inhibition increases dra-

matically when this protein is preincubated with the 30S

subunits or the 30S + 50S subunits (Figs. 6B and 7B)

seems to indicate that PY competes with other ribosomal

ligands for binding to the 30S subunits, as suggested also

from the position of PY in the crystal structure of the 70S

ribosome (Vila-Sanjurjo et al. 2004; Polikanov et al.

2012). The present results imply that the PY position on

the 30S subunit possibly clashes with that of the initiator

tRNA and/or one or more initiation factors (Fig. 7A and

C), in agreement with Vila-Sanjurjo et al. (2004) and

Polikanov et al. (2012). On the other hand, our stopped-

flow data (Fig. 7C) do not seem to support the hypothe-

sis proposed by Vila-Sanjurjo et al., that PY may hinder

IF1 binding to the 30S subunit. However, given that our

consideration is based on the lack of a fluorescence

decrease upon PY binding to the 30S-IF1 complex, it is

not inconceivable that a more direct analysis of the possi-

ble IF1-PY competition could lead to a different conclu-

sion. Finally, as inhibition is rather modest when tRNA,

mRNA, and IFs are free to compete with PY during the

formation of the initiation complexes (Figs. 6 and 7B),

we can postulate that the reaction that leads to the forma-

tion of the initiation complexes is probably faster and/or

more efficient than the binding of PY to the small

subunit, at least with some mRNAs.

Taken together our findings suggest a new model

which can explain the role of PY during cold shock.

Upon lowering the temperature, protein synthesis dimin-

ishes possibly because of unfavorable mRNA secondary

structures capable of reducing the rate of the initiation

complex formation. PY would bind to a fraction of the

free 30S subunits derived from this cold-induced poly-

some dissociation (Uchida et al.1970; Jones and Inouye

1996), thereby stimulating their joining with 50S subunits

to form inactive 70S monomers. As resumption of pro-

tein synthesis at the exit of the adaptation phase seems

more efficient in the presence of PY (Figs. 2 and S2), we

support the hypothesis that PY could protect the unused

subunits from degradation during the environmental

stress (Maki et al. 2000; Vila-Sanjurjo et al. 2004).

However, no difference was observed between wild-type

and DyfiA mutant growth curves upon cold shock in all

strains tested (MRE600, W3110, C-1a, and BW25113),

regardless the partial or full activity of the ribosome deg-

radation pathway. PY would cause also the partial inhibi-

tion of the translation of some mRNAs, while those

amenable to initiate efficiently translation in the cold by

rapidly forming 30S initiation complexes, such as cspA

mRNA, would not be affected by the PY activity.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. Assessment of MRE600 DyfiA mutation. (A)

PCR of yfiA locus. Lane 1: 100 bp DNA ladder (Fermen-

tas, Thermo Fisher Scientific, Inc., Waltham, MA); lane 2:

amplification of the Escherichia coli wt yfiA locus; lane 3:

amplification of the yfiA locus after recombination with a

kanamycin cassette (yfiA::kan); lane 4: amplification of

the yfiA locus after kanamycin cassette excision (DyfiA).
(B) Two-dimensional gel electrophoresis analysis of 70S

ribosomal proteins isolated from E. coli MRE600 wt (left)

and DyfiA cells (right) grown at 37°C (upper panels) or

subjected to 60 min cold shock (lower panels). The spot

corresponding to protein PY is circled. Further details are

given in Experimental Procedures.

Figure S2. In vivo protein expression after cold shock.

Synthesis of the proteins in MRE600 wt (gray lines) or
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MRE600 DyfiA (black lines) was followed by giving pulses

of [35S]-Promix, as described in Experimental Procedures,

immediately before (time 0) or at the times following

cold shock indicated in the graphs. After chasing with an

excess of unlabeled Met and Cys, the samples were pro-

cessed for the electrophoretic separation at 7%, 10%, and

15% acrylamide concentrations and for the determination

of the radioactivity using a Molecular Imager (Bio-Rad

GS 250). The peaks in the graphs correspond to the

intensity, expressed as “arbitrary units,” of the same point

of each band present in the lanes of the various gels. The

black and gray arrows indicate the pick corresponding to

CspA and another unidentified cold-shock protein,

respectively.

Figure S3. (A) Concentration dependence of kapp2 from

the binding of PY to the 30S subunit (■) or the 50S

subunit (●). The y-axis intercept gives the value of the

backward rate constant koff, while the slope of the lines

corresponds to the forward rate constant kon of the

reactions. Standard deviations were calculated from at

least 10 different time courses. (B) Time courses of PY

dissociation from 30S subunit (gray) or 50S subunit

(black) monitored by PY_Alexa555 fluorescent change;

0.6 lmol/L of PY_Alexa555 and 0.2 lmol/L of 30S or

50S subunits were preincubated at 15°C and then

rapidly mixed with the reaction buffer. Further

details are given in the text and in Experimental

Procedures.
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