17 research outputs found

    Population genetic structure of serotine bats (Eptesicus serotinus) across Europe and implications for the potential spread of bat rabies (European bat lyssavirus EBLV-1)

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Understanding of the movements of species at multiple scales is essential to appreciate patterns of population connectivity and in some cases, the potential for pathogen transmission. The serotine bat (Eptesicus serotinus) is a common and widely distributed species in Europe where it frequently harbours European bat lyssavirus type 1 (EBLV-1), a virus causing rabies and transmissible to humans. In the United Kingdom, it is rare, with a distribution restricted to south of the country and so far the virus has never been found there. We investigated the genetic structure and gene flow of E. serotinus across the England and continental Europe. Greater genetic structuring was found in England compared with continental Europe. Nuclear data suggest a single population on the continent, although further work with more intensive sampling is required to confirm this, while mitochondrial sequences indicate an east-west substructure. In contrast, three distinct populations were found in England using microsatellite markers, and mitochondrial diversity was very low. Evidence of nuclear admixture indicated strong male-mediated gene flow among populations. Differences in connectivity could contribute to the high viral prevalence on the continent in contrast with the United Kingdom. Although the English Channel was previously thought to restrict gene flow, our data indicate relatively frequent movement from the continent to England highlighting the potential for movement of EBLV-1 into the United Kingdom.We acknowledge DEFRA and University of Exeter for funding this stud

    Association of insularity and body condition to cloacal bacteria prevalence in a small shorebird

    Get PDF
    Do islands harbour less diverse disease communities than mainland? The island biogeography theory predicts more diverse communities on mainland than on islands due to more niches, more diverse habitats and availability of greater range of hosts. We compared bacteria prevalences ofCampylobacter,ChlamydiaandSalmonellain cloacal samples of a small shorebird, the Kentish plover (Charadrius alexandrinus) between two island populations of Macaronesia and two mainland locations in the Iberian Peninsula. Bacteria were found in all populations but, contrary to the expectations, prevalences did not differ between islands and mainland. Females had higher prevalences than males forSalmonellaand when three bacteria genera were pooled together. Bacteria infection was unrelated to bird's body condition but females from mainland were heavier than males and birds from mainland were heavier than those from islands. Abiotic variables consistent throughout breeding sites, like high salinity that is known to inhibit bacteria growth, could explain the lack of differences in the bacteria prevalence between areas. We argue about the possible drivers and implications of sex differences in bacteria prevalence in Kentish plovers

    Adverse Outcome Pathway and Risks of Anticoagulant Rodenticides to Predatory Wildlife

    Full text link

    Bat population genetics and Lyssavirus presence in Great Britain

    Full text link
    Most lyssaviruses appear to have bat species as reservoir hosts. In Europe, of around 800 reported cases in bats, most were of European bat lyssavirus type 1 (EBLV-1) in Eptesicus serotinus (where the bat species was identified). About 20 cases of EBLV-2 were recorded, and these were in Myotis daubentonii and M. dasycneme. Through a passive surveillance scheme, Britain reports about one case a year of EBLV-2, but no cases of the more prevalent EBLV-1. An analysis of E. serotinus and M. daubentonii bat genetics in Britain reveals more structure in the former population than in the latter. Here we briefly review these differences, ask if this correlates with dispersal and movement patterns and use the results to suggest an hypothesis that EBLV-2 is more common than EBLV-1 in the UK, as genetic data suggest greater movement and regular immigration from Europe of M. daubentonii. We further suggest that this genetic approach is useful to anticipate the spread of exotic diseases in bats in any region of the world

    Data from: Population genetic structure of serotine bats (Eptesicus serotinus) across Europe and implications for the potential spread of bat rabies (European bat lyssavirus EBLV-1)

    No full text
    Understanding of the movements of species at multiple scales is essential to appreciate patterns of population connectivity and in some cases, the potential for pathogen transmission. The serotine bat (Eptesicus serotinus) is a common and widely distributed species in Europe where it frequently harbours European bat lyssavirus type 1 (EBLV-1), a virus causing rabies and transmissible to humans. In the United Kingdom, it is rare, with a distribution restricted to south of the country and so far the virus has never been found there. We investigated the genetic structure and gene flow of E. serotinus across the England and continental Europe. Greater genetic structuring was found in England compared with continental Europe. Nuclear data suggest a single population on the continent, although further work with more intensive sampling is required to confirm this, while mitochondrial sequences indicate an east–west substructure. In contrast, three distinct populations were found in England using microsatellite markers, and mitochondrial diversity was very low. Evidence of nuclear admixture indicated strong male-mediated gene flow among populations. Differences in connectivity could contribute to the high viral prevalence on the continent in contrast with the United Kingdom. Although the English Channel was previously thought to restrict gene flow, our data indicate relatively frequent movement from the continent to England highlighting the potential for movement of EBLV-1 into the United Kingdom
    corecore