216 research outputs found

    Selective Laser Melting Fabrication of the Nickel Base Superalloy CMSX486: Optimisation of Process Parameters using Image Analysis and Statistical Methods

    Get PDF
    Purpose – The purpose of this paper is to optimise the selective laser melting (SLM) process parameters for CMSX486 to produce a “void free” (fully consolidated) material, whilst reducing the cracking density to a minimum providing the best possible fabricated material for further post-processing. SLM of high temperature nickel base superalloys has had limited success due to the susceptibly of the material to solidification and reheat cracking. Design/methodology/approach – Samples of CMSX486 were fabricated by SLM. Statistical design of experiments (DOE) using the response surface method was used to generate an experimental design and investigate the influence of the key process parameters (laser power, scan speed, scan spacing and island size). A stereological technique was used to quantify the internal defects within the material, providing two measured responses: cracking density and void per cent. Findings – The analysis of variance (ANOVA) was used to determine the most significant process parameters and showed that laser power, scan speed and the interaction between the two are significant parameters when considering the cracking density. Laser power, scan speed, scan spacing and the interaction between power and speed, and speed and spacing were the significant factors when considering void per cent. The optimum setting of the process parameters that lead to minimum cracking density and void per cent was obtained. It was shown that the nominal energy density can be used to identify a threshold for the elimination of large voids; however, it does not correlate well to the formation of cracks within the material. To validate the statistical approach, samples were produced using the predicted optimum parameters in an attempt to validate the response surface model. The model showed good prediction of the void per cent; however, the cracking results showed a greater deviation from the predicted value. Originality/value – This is the first ever study on SLM of CMSX486. The paper shows that provided that the process parameters are optimised, SLM has the potential to provide a low-cost route for the small batch production of high temperature aerospace components. </jats:sec

    Novel hybrid manufacturing process of CM247LC and multi-material blisks

    Get PDF
    The study on CM247LC used the traditional approach for Near-Netshape Hot Isostatic Pressing (NNSHIP) with sacrificial low carbon steel tooling, which was built using Selective Laser Melting (SLM), to produce a shaped CM247LC blisk. The assessment of the microstructure focused on both the exterior components in order to determine the depth of the Fe-diffusion layer and on the interior microstructure. Samples were extracted from the Hot Isostatic Pressed (HIPped) components for tensile testing at both room and elevated temperatures. The components were scanned to assess the geometrical shrinkages due to Hot Isostatic Pressing (HIPping). An oversized blisk was also produced based on the measurements as a demonstrator component. In addition, a further study was carried out on a novel idea that used a solid IN718 disk in the centre of the blisk to create a multi-material component

    In-situ alloying laser powder bed fusion of Ni-Mn-Ga magnetic shape memory alloy using liquid Ga

    Get PDF
    Ni-Mn-Ga-based magnetic shape memory alloys can exhibit large magnetic field induced strains (MFIS). Recently, additive manufacturing techniques, especially laser powder bed fusion (L-PBF), have been successfully used to manufacture functional polycrystalline Ni-Mn-Ga with complex geometries, such as ‘bamboo-grained’ lattice structures. However, previous approaches of L-PBF of Ni-Mn-Ga have used pre-alloyed powders, which can limit the compositional freedom of the manufactured devices. This study explores, for the first time, the feasibility of an in-situ L-PBF alloying approach using a powder blend of elemental Ni, Mn, and Ga. Promising results were obtained despite the significant differences between the elemental Ni and Mn powders and the liquid Ga. The microstructure of the as-built sample showed distinct stripe patterns from the 14 M structure confirmed by XRD analysis. Heat-treatment significantly improved chemical homogeneity, dissolved the Ni-rich phase but couldn’t dissolve MnO hindering the shape memory effect

    Deformation of AlSi10Mg parts manufactured by Laser Powder Bed Fusion: In-situ measurements incorporating X-ray micro computed tomography and a micro testing stage

    Get PDF
    Acknowledgements The authors gratefully acknowledge the financial support of the Engineering and Physical Sciences Research Council (EPSRC) under grant reference EP/R021694/1, “3D in-situ based methodology for optimizing the mechanical performance of selective laser melted aluminium alloys”.Peer reviewedPublisher PD
    • 

    corecore