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Abstract
Induction heating-assisted single point incremental sheet forming was established for Ti-6Al-4V thin sheets at closed and 
above beta-transus temperature (980 °C). In order to eliminate geometric inaccuracy and adherence of lubricant on the surface 
caused by elevated temperature, a cooling lubricant system was designed for the forming tool to decrease the thermal expan-
sion and friction. A radial basis function (RBF)-based tool path optimisation was developed to study the measured geometric 
accuracy, temperature, and forming force. By adjusting cooling lubricant control and integrating the RBF framework, the 
first optimised tool path was used to collect the results and to validate with the finite element (FE) model and theoretical 
geometric profiles. The output data were further studied by RBF and generate a second optimised tool path. The measured 
geometric coordinates revealed that the error percentage has been reduced to less than 5%. Further, the microstructure evolu-
tion analysed by scanning electron microscopy (SEM) indicated noticeable oxidation and alpha-layer for temperature around 
1040 °C and the phenomenon was removed at temperature closed to 950 °C. The surface roughness and energy-dispersive 
X-ray analysis (EDX) revealed the optimised tool path distributed significant improvement in surface quality. The cooling 
lubricant system indicated optimal performance with RBF optimised tool path to support constant temperature and reduce 
friction and lubricant adherence on the surface.

Keywords  High-temperature incremental sheet forming of Ti-6Al-4V · Machine learning network · Tool design · 
Geometric accuracy · Surface roughness · Microstructural analysis

1  Introduction

The process of single point incremental sheet forming 
(SPIF) has been developed over a number of decades for 
the deformation of sheet materials using flexible methods 
for complicated prototypes. High geometric accuracy and 
surface quality have been achieved with respect to low-
strength metal alloys. For instance, Dabwan et al. [1] has 
applied SPIF on AA1050-H14 aluminum alloy at room tem-
perature which revealed excellent geometric accuracy and 
surface quality. However, the study commented that the step 
trainsition region indicated highly deformed region which 
increased the geometric inaccuracy and waviness error. 
Shrivastava and Tandon [2] has investigated the microstruc-
ture of AA1050 under room temperature SPIF and proposed 
that the grain refinement during the process increased the 
straining behaviour thus induced springback. Ambrogio 
et al. [3] has investigated SPIF on AZ31 magnesium alloy 
which revealed high performance in increase of formability 
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and geometric accuracy, however, the risk of fracture was 
increased according the formability. Trzepiecinski et al. [4] 
have investigated room temperature SPIF on EN-2024-T3 
and EN AW-7075-T6 aluminium alloys sheets. The results 
revealed that the efficient application of lubricant and reduc-
tion of step size significantly improved the surface quality. 
Room temperature SPIF indicated that high geometric accu-
racy and surface quality can be achieved for low-temperature 
materials as the maintenance of modest forming force and 
efficient lubrication. However, heat sources must be inte-
grated for high-strength materials to reduce the forming 
force such as steel or titanium.

Sakhtemanian  et al. [5] have studied pure titanium 
alloy SPIF using ultrasonic vibration at temperatures of 
up to 250 °C in order to synthesise a high-quality product. 
However, pronounced friction wear can be observed on 
the formed surface with detectable springback behaviour. 
Cheng et al. [6] and investigated the deformation behaviour 
and material flow during the SPIF process. The results com-
mented that the dynamic effects from the ultrasonic vibra-
tion induced a noticeable reduction of the forming force and 
a significant increase of wear on deforming surface. The 
similar study by Li et al. [7] found that the inducing tempera-
ture for the high-temperature alloys should be maintained as 
constant to produce stable plastic deformation to the sheet 
materials where cannot be fulfilled using this mechanism. 
These limitations were overcome by integrating heat sources 
into the SPIF system in order to provide regional or local-
ised heating to the workpiece, thus increasing ductility and 
assisting deformation. The electrical current system was 
integrated prior to carrying out the process on the Ti-6Al-
4V sheets.

Honarpisheh et al. [8] have developed an electricity-
assisted SPIF to support a flow flux through Ti-6Al-4V 
sheets with a temperature range of 400 to 500 °C. This ena-
bles the system to deform the Ti-6Al-4V sheets to various 
wall angles and designed shapes. Ao et al. [9] have used 
the same heat source to increase the deformation height of 
Ti-6Al-4V sheets by 417.9%. However, the high current 
flux caused severe electric sparks between the tool and the 
workpiece. The resulting dissipation of lubricant results in 
pronounced adherence of lubricant on surface which signifi-
cantly affected the surface quality. Further, Chang et al. [10] 
have studied the stress state and corresponding forming load 
and proposed analytical models to predict forming force and 
relative components for ISF processes which provides a new 
method to calculate the contact area and through-thickness 
stress to reduce the error contribution from the friction fluc-
tuation at contact area. However, the effects from lubricant 
dissipation should be reduced to further improve the surface 
quality for heat-assisted SIPF processes.

Göttmann et al. [11] applied a localised heating method 
during the SPIF process by integrating a laser heating system 
that, in advance of the tool, enabled a laser beam to gener-
ate a temperature of 500 °C to deform Ti-6Al-4V sheets. 
Springback was minimised owing to the localised nature of 
the heat and movement with the tool, factors which offered 
tight temperature control. Although the laser heating system 
improved geometric accuracy, the concentrated temperature 
exerted powerful effects, causing burn-offs on the outer sur-
face of the workpiece. In addition, the high-cost laser heat-
ing system and external safety measurements meant that the 
process was complicated to set up.

To reduce the pronounced burns-off on the deforming 
surface for heat-assisted SPIF. Ambrogio et al. [12] devel-
oped an induction heating SPIF system which provided 
localised heating to the Ti-6Al-4V workpiece. This created 
a magnetic field from the eddy current between the heating 
coil and workpiece; the temperature was generated from the 
centre mass of the sheet metal to the edges. However, it 
was impossible to maintain the constant temperature during 
the high feed rate of the SPIF process. Additionally, tool 
movement caused uneven heating support which increased 
springback.

To further improve the geometric accuracy and surface 
quality, Li et al. [13] developed a high-frequency induction 
heating SPIF system which provided localised heating to 
deform Ti-6Al-4V sheets with a ball-roller tool, thus reduc-
ing friction at the tool-contact interface. The ball-roller tool 
design was proposed by Iseki and Naganawa [14] follow-
ing tool path optimisation investigations. It was applied in 
relation to the electric heating SPIF of Ti-6Al-4V sheets 
by Liu et al. [15]. It was validated that this process led to 
the production of more optimal surface quality than con-
ventional tools. Comparison with a common induction 
heater demonstrated that high-frequency induction heating 
could provide rapid eddy current transfer which was able to 
accelerate heat generation and to maintain a constant tem-
perature. Ortiz et al. [16] observed that the microstructure 
evolution indicated a pronounced dynamic recrystallisa-
tion (DRX) at temperature of 700 °C, which successfully 
increased the deforming behaviour and reduced the forming 
force. This geometric accuracy was superior to that attained 
at lower temperatures. However, the rise in temperature also 
increased lubricant dissipation; this lubrication anomaly 
impacted surface quality. In order to minimise this effect, a 
ball-roller tool was designed which reduced the contact area 
between the surface and the tool, thus efficiently enhancing 
surface quality.

Lubricant is another factor affecting the surface quality in 
heat-assisted SPIF. Formisano et al. [17] have investigated 
lubricant application and its effects on surface roughness 
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during the SPIF process on titanium alloys, observing that 
sustainable support of low viscosity lubricant is a key factor 
in enhancing lubricating functionality. Oleksik et al. [18] 
agreed the statement and suggested that localised heating 
is more efficient to maintain stability of lubricant. Further, 
Li et al. [19] have proposed a sustainable support of liquid 
MoS2 lubricant able to reduce the phenomenon of lubricant 
adherence on the surface during the induction heating SPIF 
of Ti-6Al-4V sheets up to 700 °C.

It can be observed from previous research that the appli-
cation of a heat source is an effective method by which to 
deform Ti-6Al-4V sheets during the SPIF process. The tem-
perature support for electric current and laser heating SPIF 
is normally maintained between 400 °C and 600 °C; induc-
tion heating is able to provide a constant localised tempera-
ture of up to 700 °C. Owing to the incremental movement 
of the SPIF process, it is not possible to sustain a constant 
temperature during further increases. However, it is essen-
tial to improve temperature conditions during the heating-
assisted SPIF process of Ti-6Al-4V sheets so as to improve 
their formability, wear, corrosion and temperature oxidation 
resistance further.

Zhang et al. [20]investigated the mechanisms underlying 
deformation and fracture for Ti-6Al-4V alloys under dif-
ferent heat treatments and noted that excellent hardening 
and deforming behaviour can be achieved at the beta-transus 
temperature (980 °C). Further, Singh et al. [21] suggested 
that the increase of cooling rate may increase the hardening 
effects. This was principally ascribed to the maintenance 
of constant temperature and rapid cooling rate on surface 
which increased the volume of �′-martensite and grain 
refinement within the microstructure. This proved that the 
above beta-transus temperature SPIF on Ti-6Al-4V could 
achieve favourable effects in straining behaviour to enhance 
the formability. However, the temperature must be controlled 
as a constant support with a sustainable cooling rate during 
the process to prevent the thermal expansion of tool and 
sheet metals to affect the geometric and surface quality.

In recent years, machine learning has been integrated into 
the SPIF system in order to predict temperature and spring-
back behaviours. Jiang et al. [22] investigated the tempera-
ture prediction for an electric current SPIF process using an 
artificial neural network (ANN) framework. The model was 
trained using the temperature outputs from the finite ele-
ment model (FEM) and validated with experimental data. 
The findings were useful for the prediction of parameters, 
such as temperature distribution and forming force, and 
facilitated estimation of microstructural evolution during 

the process. Wang et al. [23] developed an online adaptive 
shape predictive model for the purposes of predicting the 
forming geometry within each incremental step. The model 
was incorporated into a coupled constrained control algo-
rithm so as to minimise geometric error and to optimise the 
potential step which could provide an accurate tool path to 
improve geometric accuracy.

It can be noticed from the above literature that there are 
issues in the field of heat-assisted SPIF processing that yet 
need to be addressed. These include uneven temperature dis-
tribution, thermal expansion-induced springback, unpredict-
able DRX and phase transition-induced straining behaviours. 
These factors significantly affect the geometric accuracy, 
surface quality as well as structure integrity. The aim of this 
study was to develop an induction heating SPIF system in 
order to deform Ti-6Al-4V sheets at a temperature above 
and in the region of beta-transus, and to apply a machine 
learning method in order to optimise tool path generation. 
The initial training experiments were designed with identi-
cal experimental parameters. Following their completion, 
the obtained geometric coordinates, temperature and form-
ing force data were input into the machine learning system 
to develop an optimised tool path. The cooling lubricant 
and optimal tool path were then applied in order to validate 
the optimal results. Forming force, geometric accuracy, and 
surface roughness of the initial and machine learning opti-
misation samples were assessed using scanning electron 
microscopy (SEM) and electron backscatter diffraction in 
order to observe the mechanical behaviours and to document 
the relevant outputs, thus providing data on microstructural 
evolution.

Materials and set-up.

1.1 � Sheet metals and lubricants

The workpieces used in the study were standard Ti-6Al-4V 
alloy thin sheets, 150 mm × 150 mm in dimension, and with 
a thickness of 1 mm. The chemical composition is presented 
in Table 1.

The cooling lubricant system in this study was following 
the research by Li et al. [19] on investigation of lubricants 
and ball-roller tool in the induction heating SPIF process 
of Ti-6Al-4V sheets. The authors proposed a lubricant sys-
tem which enabled an apposite lubricating performance for 
temperatures of up to 700 °C. Since the target temperature 
in this study was in the region of the beta-transus tempera-
ture, the identical lubricant may not be able to provide suffi-
cient functionality. A number of adjustments were therefore 

Table 1   Chemical composition 
of Ti-6Al-4V (wt.%)

Ti Al V O C N H Fe

Balanced 5.5 4.5 0.2 0.08 0.05 0.015 0.25
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made in order to enhance lubrication performance. A layer 
of MoS2 paste lubricant was applied generally to the work-
piece. According to the supplier’s information, this lubricant 
consisted of grease containing MoS2 particles, and offered a 
lubricative function in temperatures of up to 650 °C. In order 
to enhance the function at the beta-transus temperature, a 
liquid lubricant was designed by mixing MoS2 particles into 
high-temperature lubricating oil.

The MoS2 powder used in this study had a purity of 98.5% 
with a mean particle size of 1.5 μm. The lubricant oil could 
provide short-term lubrication in temperatures to a maxi-
mum of 600 ◦C . The mixing process was in accordance with 
Diabb et al. [24]; 2% of MoS2 powder was shear-dissolved 
into lubricant oil for parameters of 600 rpm for 60 min. This 
percentage was chosen in keeping with the study on SPIF 
lubricants by Hussain et al. [25]; the authors proposed that 
a high percentage of MoS2 powder may decrease lubricating 
oil viscosity and result in adherence to the tool during the 
SPIF process. The liquid lubricant was designed in order to 
provide continuous support to the ball-roller tool through the 
cooling system, and to facilitate provision of enduring tool 
lubrication as shown in Fig. 1.

1.2 � Tool design

Tarín et al. [26] investigated alpha–beta transformation in 
Ti-6Al-4V alloys, and concluded that the beta-transus tem-
perature was approximately 980 °C for 4 wt.% of vanadium. 
For the thin Ti-6Al-4V sheets used in this study, the beta-
transus temperature could be estimated to be between 960 °C 
and 970 °C. In a localised heating-assisted SPIF process, 
deformation is based on the synchronisation of the constant 
temperature supply and the tool’s movement. Since the tem-
perature was close to the beta-transus, a nickel ball-roller 
was selected for this study in order to improve the tool’s 
operational temperature.

The ball-roller tool design in the SPIF process was first 
introduced by Iseki and Naganawa [14], who evaluated the 
function of a ball-roller with respect to reducing the fric-
tion area and optimising geometric accuracy. Liu et al. [15] 
improved the ball-roller design and innovated a cooling sys-
tem within the tool so as to allow water to reduce the tool’s 
thermal expansion during the electric heating SPIF process. 
As shown in Fig. 2, there are two water valves on the tool 
which control the liquid lubricant inlet and outlet; a baf-
fle plug has been designed to separate the liquid flow. The 
ball is 5 mm in diameter and made of IN 625 nickel alloy, 
which has a service temperature of 980 °C. The ball-roller 
is attached to the main tool body; lubricant balls are inter-
posed between the ball-roller and the steel net of the cooling 
channel. The lubricant balls are also composed of IN 625 
nickel alloy which has a diameter of 1 mm. The steel net, 
which has a grid length of 0.5 mm, keeps the lubricant balls 
in the lubricating slots. The purpose of the lubricant balls is 
to prevent any extrusion between the ball-roller and the slot 
wall. In the course of the process, potent thermal expansion 
may result in the strong adherence of the ball-roller to the 
tool wall and affect the rotation. Additionally, the lubricat-
ing balls can enhance liquid lubricant flow to the ball-roller.

1.3 � Experimental set‑up

The induction heating SPIF system is illustrated in Fig. 3. 
The induction heater had a maximum power of 6.6 kW with 
a frequency that could be adjusted from 600 to 900 kHz. The 
heat was induced by an eddy current which could penetrate 
the workpiece to form an electromagnetic field between the 
workpiece and the heating coil. Since the eddy current was 
strengthened towards the material’s centre of mass, heat 
generation arose from within the workpiece to its surface. 
The heating coil diameter was optimised for heat generation, 
being designed with a dimension of 5 mm and three turns in 
an analogous manner to the ball-roller tool. The supplier’s 
information stated that the induction heater provided accu-
rate and constant heating with an error of less than 2% for a 
minimum period of 20 h.

Synchronised movement of the induction heater with the 
tool was achieved by designing a support fixture to connect 
these two components. A 50 kN load cell was mounted on 
the top of the tool so that, during the experiment, the reac-
tion load from the tool could be measured. The temperature 
on the superior surface of the workpiece could be quantified 
using an infrared thermo-couple, with a temperature range 
of 400 to 1200 ℃ pointing the contact area.

A water tank was filled with 10 L liquid lubricant in order 
to provide an ongoing lubricating function to the tool. The 
flow rate could be controlled by a submersible pump, which 
operated within the range 1 to 50 L/h; this was connected 
to the inlet cooling valve. Another water tank included a Fig. 1   Schematic of the lubricating system
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submersible pump with similar parameters which was con-
nected to the cooling channel’s outlet valve. During the 
experiment, the flow rate would be controlled according to 

the tool path’s locations in order to provide sufficient liquid 
lubricant to reduce ball-roller tool thermal expansion and 
friction.

Fig. 2   Tool design: left, scheme draft of the tool design; right, the produced tool

Fig. 3   Induction heating SPIF system set-up
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1.4 � Forming shape

The final shape took the form of a truncated cone with a main 
diameter, height, and wall angle of 100 mm, 30 mm, and 45°, 
respectively (Fig. 4a). MATLAB was used to form the tool 
path and to generate a G-code coordinates output file for appli-
cation by the computer numerical control (CNC) machine. The 
tool path points are illustrated in Fig. 4b. It can be observed 
that the step tool path maintained the peak percentage of posi-
tion coordinates which results in more tool movements. Such 
behaviour may increase the temperature variance at these 
positions and influence the geometric accuracy of the form-
ing shape. Thus, the RBF networks were used to optimise the 
step tool path for superior geometric accuracy.

It is important to note that a contour tool path was applied 
in this study; a clear mark of a step tool path would be evident 
within the forming shape thus potentiating the likelihood of 
geometric, temperature and forming force instabilities. These 
factors can be enhanced by RBF network optimisation; the 
tool path is applicable for a wide range of SPIF processes. 
A helical tool path has the potential to diminish such behav-
iours as there is no step tool path. However, Malhotra et al. 
[27] stated that the algorithm is only limited to the axisym-
metric movements. Behera et al. [28] further commented that 
the forming shape of helical tool path is not fully completed 
at the beginning and ending stage, and the output geometry 
is designed by wall angle not step size. Behera et al. [29] 
and Han et al. [30] suggested that a contour tool path pro-
vided a more complete forming shape as the step size can be 
defined in the CNC setting, whereas the helical tool path is 
only applicable to axisymmetric geometry and for the provi-
sion of high surface quality. The latter is complex to generate 
since the algorithm is specific for each forming shape and 
the process can only be controlled by the ramp angle in the 
CNC settings.

2 � Methodology

2.1 � Application of radial basis function networks 
and design of experiments

The main objective of machine learning is to improve 
geometric accuracy in complicated experimental environ-
ments. Thus, the main data to study include the tool path 
coordinates and the affected factors, i.e. temperature and 
forming force. As shown in Fig. 4b, it can be observed 
that the tool step path demonstrated the most position 
points. Owing to the rapid heating support from the high-
frequency induction heater, the temperature variance for 
this particular path was higher than the rest of the tool path 
and thus increased the springback during the experiment. 
Thus, the coordinates associated with the corresponding 
temperature and forming force on this path could be col-
lected for training by the machine learning algorithm.

In order to apply the RBF optimisation effectively, 
the experiments were designed in 3 phases, i.e. as initial, 
first RBF optimisation and second RBF optimisation sets, 
respectively. Each set consisted of 5 experiments with the 
same conditions. The machine learning studied the geo-
metric coordinate output as the main data and related the 
behaviours to temperature and forming force in order to 
predict an optimised tool path and to improve geometric 
accuracy.

A RBF network was selected due to its universal 
approximation and rapid learning speed so that multiple 
factors could be evaluated and undergo analysis. RBF 
can be defined as a type of feedforward ANN network 
which has three layers (Fig. 5). The input layer consists 
of input data, such as geometric coordinates, temperature 
and forming force, on the corresponding tool path points. 
The hidden layer comprises a series of RBF non-linear 

Fig. 4   Designated forming shape: a dimensions; b tool path CNC forming points
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activation units which facilitate study of the input layer. 
The final output is in the form of workout activation imple-
mented in Gaussian functions. As illustrated in Fig. 5, the 
example analysis data set includes inputs from x1 to xn , 
together with hidden layer RBF calculating units from w1 
to wn and an output from y1 to yn . A RBF training model 
has numerous nodes in the hidden layer; the training is 
terminated when the calculation error meets the require-
ment of the desired volume or when a training iteration 
has been completed.

The output of the ith radial basis activation function, 
�i , in the hidden layer of the network can be calculated 
using Eq. (1) based on the Euclidean distance between 
the input pattern, x, and the centre, i , where ∥ ⋅ ∥ denotes 
the Euclidean distance between x and ci , and cj and �j are 
the centre and width of the hidden neuron, j , respectively.

The output of the node, k, of the output layer of the 
network can then be calculated utilising Eq. (2):

The majority of classical approaches deployed in the lit-
erature for training RBFs are performed in two stages. In 
the first stage, the centres and widths are determined using, 
for example, an unsupervised clustering algorithm, whilst in 
the second stage, the connection weights between the hidden 

(1)�i(x) = exp

�
−
‖x − ci‖2

2�2

j

�

(2)yk =

n∑
j=1

�jk�j(x)

and output layers are determined in such a way that the error 
criterion, e.g. the root mean squared error (RMSE), is mini-
mised throughout the data set.

2.2 � Accuracy analysis

Since the input in this study was based on the tool step path, 
the variant could be defined by the X and Z coordinates; the 
Y coordinates could be neglected. Thus, the model could 
be simplified to a 2-dimensional (2D) RBF paradigm which 
significantly reduced the calculation time in the RBF net-
work. In this study, 130 tool path geometric coordinates 
with corresponding temperature and forming force data 
were considered as neurons in the RBF study. The output 
layer is 1 (tool path coordinates) and 3 input layers (tool 
path coordinates, temperature, forming force). A total of 
12,000 input–output pairs were generated to respond the 
inputs. Please refer to the support document for the detailed 
calculation and explanation.

Fiorentino  et al. [31] commented that the network 
training can be defined as a feedback loop which facili-
tates the study of the process parameters and Dittrich et 
al. [32] further classified machine learning of tool path 
generation in CNC processes which proposed that the 
model was contrasted against the experimental data; 
where five statistical parameters were compared, includ-
ing the RMSE, the squared multiple correlation coeffi-
cient ( R2 ), the bias or distortion ( � ), the Wilmott index 
( Iw ) proposed by Willmott [33] to measure the prediction 
error for RMSE, and the error function ( � ) proposed by 

Fig. 5   Example of RBF network
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Haller [34] to measure the standard normal cumulative 
probability.

In the above equations, N represents the number of data 
in each group, and Xc and Xm indicate predicted and meas-
ured experimental data, e.g. geometric coordinates, tempera-
ture and forming force, respectively. The training was termi-
nated when the values of R2 and Iw were equivalent or lower 
than 1.0, and � was reduced to 2%, a strategy which revealed 
enhanced agreement with the results. The learning basis was 
recommended by Sharif Ahmadian [35], who investigated 
the use of RBF networks in numerical modelling; these were 
validated to give a precise output for 2D accuracy analysis.

2.3 � Particle swarm algorithm

In this study, the platform, TensorFlow [36] was applied in 
order to run the RBF network training. The input layer of 
the RBF network consisted of the points on the step tool 
path, together with the corresponding data points includ-
ing geometric coordinates, temperature and forming force 
from the experimental measurements. The output layer is 
the optimised tool which was predicted on the correspond-
ing input layers.

(3)RMSE =

⎡
⎢⎢⎢⎢⎣

N�
i=1

�
Xci

−Xmi

Xmi

�2

N

⎤
⎥⎥⎥⎥⎦

1∕2

(4)R2 =

�∑N

i=1

�
Xmi

− Xm

��
Xci

− Xc

��2

∑N

i=1

�
Xmi

− Xm

�2 ∑N

i=1

�
Xci

− Xc

�2

(5)
� =

∑N

i=1

�
Xci

Xmi

�

N

(6)Iw = 1 −

∑N

i=1

�
Xci

− Xmi

�2

∑N

i=1

����Xci
− Xm

��� +
���Xmi

− Xm
���
�2

(7)� =

⎡⎢⎢⎢⎣

∑N

i=1

�
Xci

− Xmi

�2

∑N

i=1
X2
mi

⎤⎥⎥⎥⎦

1∕2

In order to apply multi-level inputs, Han et al. [30] 
has investigated different ANN networks to predict the 
springback of SPIF and proposed that the particle swarm 
algorithm (PSO) can be integrated to the RBF network to 
study the random parameters. The PSO aims to search the 
potential solution (particle) in space. Each particle has 
independent space and velocity, the values on the direction 
and space can be determined by the optimisation function. 
Please see the attached supporting document for the step-
by-step PSO integration.

2.4 � Machine learning validation

The results of machine learning model test and training 
forming depth results are selected to validate the RBF 
model as illustrated in Fig. 6. It can be noticed that the test 
and training (predicted forming depth in log scale form) 
are consistent and converged after 1,500 epochs. The pre-
diction accuracy is shown in Table 2. The results proved 
that the RBF model achieved excellent determination with 
low root mean squared error (R2) and distortion ( � ) which 
validated good agreement between test and training.

2.5 � Experimental procedure and parameters

The experimental categories were described in Sect. 2.1. 
Since cooling is an external support to reduce the thermal 

Fig. 6   RBF learning curves. (RMSE values are in log scale)

Table 2   Prediction accuracy of machine learning

Parameters RMSE (mm) R2 (%) β (%)

Training
Test

0.62
0.65

95.4
95.4

1.95
2.06
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effect on the tool, there was therefore no application of 
cooling lubricant in the initial experiment. For the first and 
second optimisations, cooling lubricant was assisted using 
modified cooling flow rate (Table 3). The experimental 
process is illustrated in Fig. 7. The first 5 experiments uti-
lised the same process parameters; geometric coordinates, 
temperature and forming force data were collected after 
each experiment. The RBF framework then worked on the 
obtained data in order to compute the optimal tool path. It 
is important to note that the first RBF optimised tool path 
was based on initial group of experiments and second RBF 
optimised tool path was based on the first optimised group 
of experiments.

3 � Finite element model

ABAQUS/Explicit was used in order to establish an ideal 
model which has a constant temperature distribution to 
validate geometric accuracy, temperature and forming 
force from the initial and optimisation experiments. The 

simulation results will be compared with experiments to 
validate the improvements of RBF network tool path opti-
misation. By following the parameters from Li et al. [13] on 
investigation of induction heating SPIF for Ti-6Al-4V sheets 
at temperatures of 600 and 700 ◦C . The tool in the simula-
tion was considered to be an analytical rigid body, 5 mm 
in diameter. The dimensions of the workpiece comprised 
150, 150 and 4 elements in x-, y-, and z- directions, respec-
tively. A total of 90,000 coupled temperature and displace-
ment (C3D8T) elements were assigned to the workpiece. 
The interaction was set as surface-to-surface contact of tan-
gential behaviour with friction value of 0.1. This value was 
used in the previous study by Gatea et al. [37] in numerical 
modelling to study the fracture and damage behaviour based 
on Coulomb's friction law calculation which theoretically 
matched with the analytical model and experiments. And 
the value has been further validated by Gatea et al. [38] to 
study the forming parameters in SPIF process.

Since the beta-transus temperature is typically hard to 
utilise and to maintain in experiments, Oberwinkler et al. 
[39] proposed that 950 ◦C could be easier for the heating 

Table 3   Experimental 
parameters

Parameters Initial First RBF Second RBF

Target temperature (°C)
Feed rate (mm/min)
Step size (mm)
Power (kW)
Frequency (kHz)
Cooling flow rate (L/h)

950
500
1.0
6.0
900
No

950
500
1.0
6.0
900
4 (step tool path)
2 (the remaining tool path)

950
500
1.0
6.0
900
8 (step tool path)
2 (the remaining tool path)

Fig. 7   Working scheme of the machine learning-based networks
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source to maintain which improved the agreement between 
experiments and simulations. Wang et al. [40] has validated 
the source and obtained better matched results. Thus, the 
temperature boundary condition was modified to 950 ◦C and 
then kept constant in order to reduce any effects from tem-
perature variance. A BlueBEAR high performance comput-
ing system was employed in order to perform the simulation; 
the computing node included 36 Ice Lake Intel® Xeon® 
cores with 3.9 GHz per core and 120 GB memory.

In order to simulate the process accurately, stress and strain 
parameters were collected through the Instron 5500R uniaxial 

tensile test machine and thermal properties from THEMYS 
thermal analysis platform. The specimens were elongated up 
to the fracture. The test specimen geometry, with dimensions 
in alignment with ASTM E8 standards, is shown in Fig. 8a, b 
depicts the obtained stress–strain curves. The mechanical and 
thermal properties were tested accordingly and represented in 
Tables 4 and 5, respectively. Please note that the strain rate 
used in the uniaxial tensile test is following the experiment’s 
conditions and all uniaxial tensile and thermal tests were com-
pleted by authors’ mechanical testing centre.

Fig. 8   Mechanical tensile test of 
Ti-6Al-4V alloy: a dimensions 
of the dog bone workpiece; b 
true stress–strain curves

Table 4   Mechanical properties of Ti-6Al-4V

Temperature 
(◦C)

Young's Modulus 
(GPA)

Poisson's 
Ratio

Density (kg/m3)

20
600
700
800
900
1000

113
65.57
50.08
32.92
24.07
14.85

0.34
0.38
0.38
0.39
0.42
0.43

4420
4336
4324
4309
4294
4282

Table 5   Thermal properties of Ti-6Al-4V

Temperature 
(◦C)

Conductivity 
(w/m ◦C)

Expansion Heat 
capacity (J/
kg ◦C)

20 7 8.90 × 10–6 546
600 14.2 1.02 × 10–5 673
700 15.5 1.04 × 10–5 694
800 17.8 1.05 × 10–5 714
900 20.2 1.08 × 10–5 734
1000 22.7 1.11 × 10–5 753
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4 � Results and discussion

4.1 � Geometric accuracy

The geometric profile of the formed shapes was meas-
ured using the FARO 3-dimensional (3D) scanning arm. 
All geometric coordinates were measured from the work-
piece deforming surface centre path according to the step 

transition tool path. To reduce the unclamped springback 
from the workpiece, the sample edges was clamped prior 
to any geometric profile scanning. The CAD and simula-
tion geometric profiles were used in the figures for experi-
mental result validation. Each RBF optimised tool path 
was trained geometric coordinates, temperature and form-
ing force distribution on the step transition tool path to 
compensate the thermal expansion from the workpiece 

Fig. 9   Observation of the formed shapes: a initial formed shape, c first RBF, e second RBF; measured geometric accuracy profiles: b initial, d 
first RBF, f second RBF
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and predict the correction for the displacement between 
theoretical and experimental profiles.

Figure 9a, c, e demonstrates the observable springback 
behaviour which occurred at the superior and inferior areas. 
The agreement between the experimental and simulation 
results was enhanced by the application of the first and sec-
ond RBF optimisations and adjustment of cooling lubricant 
(Fig. 9b, d, f).

This provided critical evidence that the predicted RBF 
tool path had a compensation effect on springback behav-
iour. The process ending stage at the lower area, revealed 
that the processing temperature above beta-transus (980 °C) 
induced unpredictable springback and pronounced adher-
ence of lubricant. By applying RBF optimised tool path and 
cooling lubricant, the temperature had been reduced and the 
variance was dominated. The RBF optimised tool path thus 

compensated the deviation from the thermal expansion to 
reduce the springback. Further, the cooling lubricant system 
adjustment had noticeable effects on reducing the tool move-
ment tracks as shown in Fig. 9f. The continuous and sustain-
able support enabled the tool to undergo sufficient lubrica-
tion thus reducing lubricant adherence to the workpiece. The 
detailed error percentage were presented in Table 6. It can 
be observed that the initial set of experiments deserved the 
peak error percentage and the values were decreased by each 
RBF networks optimisations. By introducing first and second 
RBF optimisation, the average error percentage reduced to 
5.32% and 3.38% which shown a significant improvement in 
geometric accuracy. Please note that the error measurements 
from the experiments were averaged from the set experi-
ments and compared with the simulation result.

4.2 � Forming temperature

The experimental temperature profiles were measured using 
the infrared thermo-couple on the deforming surface, which 
corresponded to the contact area under the tool. The double-
dotted line in Fig. 10 distinguishes the tool path from the 
truncated cone; the parameters in the region are virtual in 
order to connect the measured values.

Table 6   Error percentage of geometric accuracy between experiment 
groups

Maximum error 
(%)

Minimum error 
(%)

Average error 
(%)

Initial
First RBF
Second RBF

26.13
8.21
4.33

1.53
0.79
0.19

12.11
5.82
3.38

Fig. 10   Temperature measurements according to the step transition tool path: a initial, b first RBF optimisation, c second RBF optimisation
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It can be seen that the simulation temperature profile had a 
stable distribution with a small variation within the range 3 to 
8 ℃. This could be presumed to be solid evidence of geometric 
accuracy. In the initial experiments, the temperature distribution 
at the step path appeared higher. There was a rapid increase in 
temperature; the temperature distribution at the common tool 
path demonstrated a relatively steady increase. It could be con-
sidered that the temperature control was insufficient for the step 
tool path relative to the common tool path due to its increased 
duration. Throughout, the temperature variance for the initial 
experiments was 120 ℃ (920–1040 ℃). Following the first and 
second RBF network optimisations, this parameter was reduced 
to 70 ℃ (910–980 ℃) and 45 ℃ (905–950 ℃), respectively. 
Thus, the introduction of the RBF network optimisations and 
cooling temperature control diminished the temperature vari-
ance to a constant level closer to the ideal simulation results.

4.3 � Forming force

The forming forces presented in this study were measured 
according to the step tool path. The experimental results 
were compared with the simulation in order to validate the 
performance of the RBF network optimisations. Similarly to 

the forming temperature data, Fig. 11 illustrates the form-
ing force according to the tool path along the step line. The 
double-dotted line distinguishes the tool path and the trun-
cated cone; the values in the region are virtual in order to 
connect the measured parameters.

A pronounced variance can be observed between the 
simulation and experimental results (Fig. 11a). The former 
became steady from the starting stage, i.e. 15 mm from the 
X direction, whilst the experimental data demonstrated an 
unstable increase. This could be accounted for as, accord-
ing to the step tool path, the variance from the temperature 
distributions exerted a strong effect, impacting the form-
ing force applied. The consequent unstable temperature and 
forming force distributions resulted in notable deflections in 
geometric accuracy.

When compared with the initial experimental data set, 
the experimental results following application of the first 
RBF network optimisation (Fig. 11b) were concentrated 
together and fitted the simulation result. After the sec-
ond RBF network optimisation, improved fitting between 
experimental and simulation results was evidenced 
(Fig. 11c). This indicated that the temperature distribu-
tion according to this path was steady and able to provide 

Fig. 11   Forming force according to the step tool path: a initial, b first RBF optimisation, c second RBF optimisation

833The International Journal of Advanced Manufacturing Technology (2022) 123:821–838



1 3

superior geometric accuracy. Overall, the results from the 
experiment were lower than from the simulation as the 
temperature in the former was higher than in the latter. 
This increased workpiece material ductility, thus reducing 
the forming force distribution.

In summary, it can be observed that the forming force 
in the experiments revealed unstable distributions when 
compared with the temperature profiles. This effect could 
be attributed to the high temperature used in this study, 
which was greater than the beta-transus of Ti-6Al-4V. The 
strong DRX and beta transition have potent effects, affecting 
the material microstructure and therefore inducing unstable 
forming forces and increasing geometric inaccuracy. These 
observations matched the mechanical behaviour reported 
by Jha et al. [41], who documented the high-temperature 
deformation behaviour of a Ti-6Al-4V alloy. The RBF net-
work optimisation, incorporating a cooling lubricant sys-
tem, enhanced the steady performance of the temperature 
distribution which resulted in a stable forming force distri-
bution according to the step tool path and thus, improved 
geometric accuracy.

4.4 � Scanning electron microscopy (SEM) 
and energy‑dispersive X‑ray analysis (EDX)

Hitachi TM3030 SEM/EDX system was used to evaluate 
the surface quality on deforming surface and the diffusion 
of compound layer, microstructure evolution on thick-
ness section. All samples (initial, first and second RBF) 
were prepared from the lower part of formed shapes. The 
first EDX analysis was applied to the samples’ deform-
ing surfaces by first cleaned using 70% alcohol, followed 
by ultrasonic cleaning at 30 kHz for 30 min in order to 
remove any remaining contamination. Further SEM and 
EDX were applied to the thickness section by chemical 
polished with 0.04 μm Colloidal Silica (OP-S) suspension 
and etched using Kroll's reagent (2 mL HF, 10 mL HCl, 
88 mL H2O).

As shown in Fig. 12a, the initial experiment illustrated 
a pronounced area of large micro-cracks, sizeable valleys 
and a notable amount of remaining lubricant adherence. 
Such phenomena resulted in a reaction between the mate-
rial and lubricant elements which led to the formation of a 
compound mixture layer (Fig. 12d). The pronounced alpha-
case and interlamellar � grains indicated a beta-transus. 
The formation of the compound layer and the alpha-case 
induced the geometric inaccuracy described in Sect. 4.1. 
The microstructure matched the findings of de Castro et al. 
[42] who assessed 1050 ℃ heat treatment on Ti-6Al-4V 
alloy for 30 min with heating and cooling rates of 20 °C/
min and 6 °C/min. Where a Widmanstätten-type structure 

was obtained with a basket-weave microstructure. The 
alpha-case with basket-weave microstructure proved that the 
temperature has exceeded the beta-transus with a relatively 
slow cooling rate. The study proposed that the annealing of 
Ti-6Al-4V above beta-transus increased the DRX process 
significantly and induced notable thermal expansion during 
the process. Therefore, the microstructure formed in this 
study increased the micro-cracks due to the strong thermal 
expansion and resulted in deeper diffusion of compound 
layer and alpha-case.

By applying the first RBF optimisation and cooling lubri-
cant, the incidence of micro-cracks was reduced and the 
cracks per se became smaller (Fig. 12b). Additionally, the 
compound layer was decreased (Fig. 12e). Lamella � grains 
with nucleation of � grains were detected to initiate a slight 
�

′ martensite microstructure. The phenomenon can be attrib-
uted to the enhanced cooling rate from the cooling lubricant. 
Zhang et al. [43] have evaluated the oxidation behaviour of 
Ti–6Al–4 V during varied hot deformation processes, pro-
posed that the activation energy at beta-transus temperature 
will exceed the formation and growth of critical nucleus 
grain boundaries and react with interfacial energy for nucle-
ation of new phases and alpha-case formation. Seth et al. 
[44] agreed with statement and suggested that alpha-case 
is more pronounced at beta-transus temperature heat treat-
ment with rapid cooling rate, and the structure exhibits brit-
tle failure due to the numerous cracks in the alpha-case. In 
this study, it can be proven that the cooling lubricant only 
removed the compound layer and the reduced temperature 
decelerated the formation of � grains and alpha-case.

After the second RBF network optimisation (Fig. 12c), 
only small micro-cracks were observed owing to the reduced 
temperature and cooling lubricant. The obtained phenom-
enon indicated a complete removal of compound layer as 
shown in Fig. 12f. A bimodal microstructure which com-
posed of primary � grains and transformed � grains has been 
illustrated. According to Chong et al. [45] on the investiga-
tion of deformation mechanism and properties of Ti-6Al-4V 
alloy, the bimodal microstructure bearing balanced volume 
of � – � grains and refined grain size which enhancing the 
straining behaviour. The microstructure will enhance the 
straining during the SPIF process where no alpha-case to 
increase the risk for brittle fracture and less compound layer 
to affect the surface quality.

The EDX maps in Fig. 12g–i indicated the removal of 
compound layer corresponding to initial, first and second 
optimisation experiment maps. It can be noticed that the 
compound layer has been removed according to the reduc-
tion of temperature and increase rate of cooling-lubricant. 
The results indicated a good cooperation between cool-
ing lubricant system and RBF optimised tool path. The 
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temperature initiation and friction at the contact area had 
been reduced after each RBF optimisation, which results 
in formation of bimodal microstructure that enhanced 
grain-boundary straining and promoted better surface 
quality with reduction of micro-cracks and diffusion of 
lubricant compound layer.

4.5 � Surface roughness

The deforming surfaces from the SEM samples have 
been characterised using the Alicona Infinite Focus opti-
cal surface measurement system in order to obtain surface 
roughness measurements. The imaging capture area was 

Fig. 12   EDX and SEM maps: EDX and micro-cracks on deforming 
surface: a initial, b first RBF, c second RBF; SEM maps on cross-
section top surfaces: d initial, e first RBF, f second RBF; EDX maps 

on cross-section top surfaces: g initial, h first RBF, i second RBF; 
(Element map: titanium, red; molybdenum, green; oxygen, blue)
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2.5 mm × 2.5 mm for all samples. A Gaussian filter was used 
so as to reduce the noise on inclined planar surfaces.

The surface roughness measurements were maximal 
following the initial experiment (Fig. 13a), results which 
could relate to the peak dissipation of lubricant seen at this 
stage. This phenomenon resolved following the first optimi-
sation (Fig. 13b). Following the second RBF optimisation 
(Fig. 13c), a reduction in surface roughness peak value was 
achieved which implies that the dissipation of lubricant had 
decreased. This offered strong evidence that the temperature 
variance was controlled during the second RBF optimisa-
tion; the consequently reduced temperature and forming 
force resulted in a slow dissipation of lubricant.

The measurements of average surface roughness ( Sa) for 
the samples are illustrated in Fig. 14. The first RBF opti-
misation revealed a decrease from the initial experiments 
to the second RBF network optimisation, which indicated 
that the unstable temperature and forming force resulted in 
an uneven surface. With the dissipation of the lubricant, the 
surface roughness was higher than in the second RBF net-
work optimisation.

5 � Conclusion

•	 RBF network is a useful machine learning method to 
study the experimental parameters (geometric coordi-
nates, temperature, forming force) based on abundant 
training groups. The results shown that the RBF opti-
mised tool path can be gradually improved depends on 
two sets (each set 5 experiments) of training experiments 
and reduced the springback to 5% and below.

•	 The ball-roller tool integration with cooling lubricant 
formed a functional way to reduce the thermal expansion 
on the tool. The sustainable support of liquid lubricant 
significantly improved the function of the lubricant and 
promoting geometric accuracy and surface quality.

•	 The FEM analysis indicated ideal profiles (geometric, 
temperature, forming force) to compare with the meas-
ured results to indicate the improvements. It can be 
noticed that each RBF tool path optimisation with cool-
ing lubricant induced a reduction in temperature which 
approached to the simulation and improved the geometric 
accuracy to the CAD profile.

•	 The non-cooling lubricant experiments indicated rapid 
temperature increase at ending stage over the set tem-
perature which accelerated the lamellar microstructure 
growth to form basket-weave structure. Such growth 
increased the springback with further enhancement of 
compound layer diffusion and alpha-case which increased 
the surface roughness.

•	 The cooling lubricant indicated a pronounced temper-
ature reduction which slow down the rapid growth of 
lamellar microstructure. The active lubricating service 
removed the formation of compound layer and balanced 
the temperature increase which improved the surface 
quality and enhanced the geometric accuracy.

Fig. 13   Measurements of surface roughness: a initial, b first RBF optimisation, c second RBF optimisation

Fig. 14   Average surface roughness for the selected area
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