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Microstructural Control During Direct Laser Deposition of a -Titanium Alloy  

Chunlei Qiu, G. A. Ravi, and Moataz M. Attallah
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School of Metallurgy and Materials, The University of Birmingham, Edgbaston B15 2TT 

 

Abstract 

A concern associated with Direct Laser Deposition (DLD) is the difficulty in controlling 

microstructure due to rapid cooling rates after deposition, particularly in beta-Ti alloys. In these 

alloys, the beta-phase is likely to exist following DLD, instead of the desirable duplex alpha + 

beta microstructure that gives a good balance of properties. Thus, in this work, a parametric 

study was performed to assess the role of DLD parameters on porosity, build geometry, and 

microstructure in a beta-Ti alloy, Ti-5Al-5Mo-5V-3Cr (Ti5553). The builds were examined 

using optical microscopy, scanning electron microscopy, and X-ray diffraction. Microhardness 

measurements were performed to assess the degree of re-precipitation of alpha-phase following 

an in-situ dwelling and laser annealing procedure. The study identified several processing 

conditions that enable deposition of samples with the desired geometry and low porosity level. 

The microstructure was dominated by beta-phase, except for the region near the substrate where 

a limited amount of alpha-precipitates was present due to reheating effect. Although the 

microstructure was a mixture of equiaxed and columnar beta-grains alongside infrequent fine 

alpha-precipitates, the builds showed fairly uniform microhardness in different regions. In-situ 

dwelling and annealing did not cause an obvious change in porosity, but did promote the 

formation of alpha-precipitates.   

   

Key words: Direct laser deposition; parametric study; beta-titanium alloys; build geometry; 

microstructure; microhardness 
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1. Introduction 

DLD is an additive manufacturing technology that can be used to manufacture solid metallic 

components directly from a CAD (computer-aided design) file. During the process, powder is 

fed at a controlled rate into the laser focal point where it is melted into the melt pool. The path of 

the laser in the X-Y plane and along the Z axis is defined by a numerical control (NC) program 

which is derived from a CAD file of a component [1]. The technology has many potential 

applications, including production of functional prototypes, fabrication and repair of 

components, and fabrication of functionally graded materials and composites. Hybrid 

manufacturing using DLD is another potential application, whereby it can be used in 

combination with another manufacturing technology to deposit geometrical features in order to 

simplify the manufacturing process [2].  

 

Compared to machining, DLD is particularly attractive for the fabrication of titanium aerospace 

components because it can greatly reduce the buy-to-fly ratio and lead-time for production; the 

two factors which impact the cost. Thus, a number of previous efforts have been undertaken to 

develop titanium DLD processes. Much of the focus of this prior research has been on α+β 

Ti-based alloys such as Ti-6Al-4V, Ti–6.5Al–3.5Mo–1.5Zr–0.3Si. Extensive study has been 

performed on these alloys in terms of structural integrity (e.g. porosity) [3-5], geometric integrity 

[3], microstructure [3-14], residual stress [15], distortion [3,15], mechanical properties and 

anisotropy [3,5,10,12] and the influence of laser processing condition and post-build heat 

treatment and hot isostatic pressing [3,5,16]. Throughout these studies, it is well understood that 

these alloys are liable to development of porosity especially lack-of-fusion pores at the 

inter-layer boundaries during DLD which are blamed for tensile anisotropy [3,5]. Also, these 
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alloys tend to develop columnar grains and strong texture after DLD [3,6,10,13].  

 

In contrast, reports on DLD of -Ti alloys such as Ti–25V–15Cr–2Al–0.2C, 

Ti-5Al-5Mo-5V-1Cr-1Fe and Ti-5Al-5Mo-5V-3Cr are rather limited, probably due to their 

relatively higher density and narrower applications as compared with α+β Ti-based alloys. There 

are only a few reports on DLD of -Ti alloys so far, mainly focused on microstructural 

investigation. The influence of processing conditions on geometric integrity (such as build height 

and final shape) and porosity development of as-DLDed -Ti alloys is not well understood. Wu 

et al. [17] studied the influence of DLD processing condition on the microstructure of 

Ti–25V–15Cr–2Al–0.2C and suggested that in contrast to Ti-6Al-4V the alloy formed equiaxed 

rather than columnar grains during DLD for a very wide range of processing conditions. They 

have attributed this to the unique solidification behaviour of this type of alloys which is dictated 

by their compositions. However, the variation trends in the grain structure between equiaxed 

grains and columnar grains with the processing parameters (such as laser power, scanning speed 

and powder feed rate) could still be observed for these alloys, suggesting that the thermal history, 

which is controlled by processing parameters, is another determining factor for the 

microstructural development in DLD. Liu et al [18] investigated the response of 

Ti-5Al-5Mo-5V-1Cr-1Fe to DLD and found that the as-fabricated microstructure contained a 

mixture of columnar grains and equiaxed grains which laid out in the form of a sandwich 

structure. They also recognised the inhomogeneous thermal distribution throughout the builds 

during DLD but did not investigate the microstructure in different regions (e.g. bottom up to top 

regions). Given that the microstructural development for -Ti alloys is highly sensitive to 

thermal history and their α phase nucleation process is far more complicated than α+β Ti-based 
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alloys [19-21], it is necessary to examine the as-DLDed microstructures throughout the builds as 

the DLD process could cause different thermal effects in different regions.  

     

Further, since the aerospace -Ti alloys (e.g. Ti5553 and Ti-10-2-3) are typically forged and 

aged, their microstructure is typically composed of a + microstructure. Due to the rapid 

cooling rates associated with DLD, the microstructure is mostly composed of the -phase, which 

does not necessarily achieve the required properties. Therefore, in the current study, in addition 

to the assessment of the impact of the process parameters on the geometry, structural integrity, 

microstructural and microhardness development during DLD of a -Ti alloy (Ti5553), In-situ 

dwelling and annealing are also conducted with the aim of promoting the re-precipitation of the 

-phase.  

    

2. Experimental 

The material used in this study was gas atomised Ti5553 powder supplied by TLS Technik, with 

a particle size range of 50-150µm. The particle size distribution of the as-received powder was 

analysed using both scanning electron microscope and a laser scattering particle size analyser 

and the result is shown in Fig. 1.  

 

A 6.5-axis TRUMPF DLD (blown powder) system fitted with a 4 kW disc laser and an 

automatic spot change collimator (from 0.2 to 6mm) was used to deposit samples of dimensions 

20  20  20 mm
3
. The setting up of this system has been described in detail elsewhere [1,3]. 

The NC program was created from the CAD file using ALPHACAM Mill software provided by 

Planit CAD/CAM Software, UK. Laser energy was delivered through an optical fibre into the 
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focal point formed on the substrate to which point powder was fed using a SIEMENS powder 

feeder through a 3 beam nozzle by argon. The desired spot size for the laser beam was achieved 

by varying the lens position automatically in the collimator. 

 

The samples were deposited on thermomechanically processed and annealed Ti5553 substrates 

in an argon atmosphere to limit any oxidation, down to below 500 ppm prior to deposition. The 

substrates were cleaned and pre-heated with a high laser power. Samples were fabricated using a 

wide range of processing parameters, including different laser powers (1100-1600 W), scanning 

speeds (500-1100 mm/min), powder flow rates (4-9 g/min) and Z steps (0.5-1.0 mm). The actual 

parameters were normalised, as shown in Table 1. In-situ dwelling between the layers for 30 s 

and 60 s (with the laser beam switched off) and in-situ annealing at different laser powers (laser 

scan with no blown powder) at 200W and 400W were performed after each layer’s deposition to 

assess their impact on the promotion of -phase re-precipitation. In addition, the influence of 

in-situ dwelling and annealing on the structural integrity (porosity formation), microstructural, 

and microhardness development formation was also investigated. The detailed in-situ dwelling 

and annealing procedure and conditions are listed in Table 2. The deposition condition for this 

investigation was selected to be the Process condition 2 shown in Table 1.  

 

The dimensions of the as-fabricated samples were measured in terms of their build heights. 

Because of the uneven surfaces, measurement of the build height was conducted on different 

locations of the sample surfaces, which gave rise to a range of build heights for each sample. 

Metallographic specimens were prepared and examined using optical microscopy (OM) to reveal 

the porosity size and distribution. Statistically representative images were taken and stitched to 
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develop a whole picture of a large section of the samples. Porosity level was evaluated by 

measuring the area fraction (Af) of pores using Image-J software.  

 

Samples were etched in an etchant containing 50 ml distilled water, 25 ml HNO3 and 5 ml HF 

for microstructural characterisation using OM and a JEOL 7000 FEG scanning electron 

microscope (SEM). Electron Backscattered Diffraction (EBSD) was also conducted in the SEM 

to study the grain structure and X-ray diffraction was performed to identify the phases present 

following deposition. The EBSD samples used were polished and chemically etched in activated 

colloidal silica solution prior to EBSD examination. Finally, microhardness measurements were 

performed to trace the microhardness development along the build height using an Indentec 

Vickers microhardness testing machine using a 30kN load applied for 10 s.   

 

3. Results 

3.1 Influence of DLD processing condition on build height  

Fig. 2(a) shows samples that were built using different processing conditions. It can be seen that 

the build height varies from one sample to another. The processing conditions together with the 

build height measurement results are listed in Table 1. It is obvious that the processing 

parameters, especially laser scanning speed and powder flow rate, have a significant influence on 

the build height and geometrical integrity. Thus, for Processes 1, 2, 3 where the Z step and 

powder flow rate are low and only the laser scanning speed is changed, a low laser scanning 

speed (Sp mm/min) was found to lead to a pronounced excess build (i.e. the actual build height is 

bigger than the specified height), whereas too high laser scanning speed such as (Sp+400) 

mm/min resulted in an under-build (i.e. the actual build height is lower than the program height). 
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The use of an intermediate scanning speed of (Sp+200) mm/min led to a good sample with a 

build height close to the specified height. At high laser power and high powder flow rate like 

Processes 8 and 9, lower scanning speed again led to excess build. The powder flow rate is also 

shown to demonstrate a remarkable influence on the build height; with other processing 

conditions being kept the same, increase of powder flow rate generally led to increase in build 

height. This is very obvious for Processes 3 and 4 where powder flow rate was increased by 1.7 

g/min resulting in increase of build height by around 6 mm. Pronounced increase in build height 

was also observed from Process 7 to Process 8 (the latter shows higher powder flow rate). The 

dependence of build height on powder flow rate is clearly due to the fact that increased powder 

flow rate would allow more powder to be melted, which would increase the actual build layer 

thickness.  

 

In contrast to laser scanning speed and powder flow rate, the laser power tends to show less 

influence on the build height when the other processing parameters are identical. Actually, an 

increase in laser power from P in Process 2 to (P+200) W in Process 6 did not lead to an obvious 

change to the build height. This also happened to Processes 3 and 5 where the difference in laser 

power did not change build height significantly either. This may be due to that P was already 

high enough to melt the captured powder and that further increase in laser power did not 

necessarily increase the powder capture rate and the amount of deposited materials within a 

specific duration.   

 

The influence of Z-step on build height appears to depend on the actual build layer thickness. In 

Process 6, the Z-step 0.6mm is very close to the actual build layer thickness (around 0.62 mm) 



  

 9 

and the total build height is close to the specified height whereas in Process 7, the Z-step is much 

bigger than the actual build layer thickness (which means the nozzle and the laser focal point 

would move further and further away from the build surface with continued building) and this 

would make the molten material splash off the build and lead to less material being deposited on 

the build surface and consequently to an under build. Similar phenomenon has been reported in 

Qiu et al’s work on DLD of Ti-6Al-4V samples [3].  

 

3.2 Influence of DLD processing condition on porosity and microstructure     

Fig. 2(b-d) shows the porosity level of as-fabricated samples that were produced with process 

conditions 2, 6, and 8, all of which gave rise to the required geometry and build heights. It can be 

seen that all of these samples show low porosity (<0.1% in area fraction). Fig. 3 and Fig. 4 show 

the grain structure in the bottom and upper regions of the as-fabricated samples. All the samples 

showed a mixture of columnar grains and equiaxed grains. Detailed observation of the 

laser-melted beads revealed that each bead contains columnar grains at its peripheral regions and 

equiaxed grains in the centres. The columnar grains seem to have grown epitaxially between the 

layers. Also, it is noted that the bottom regions of the samples tend to be more dominated by 

columnar grains whereas the middle or top regions show increased numbers of equiaxed grains 

(Fig. 4). The difference in terms of grain structure is also illustrated using schematics (see Fig. 

3(d) and Fig. 4(e)). Those columnar grains present in the upper regions also show reduced length 

and aspect ratio (length/width) as compared with those in the bottom region. This is consistent 

with Wu et al’s work on DLD of Ti–25V–15Cr–2Al–0.2C [17]. Moreover, it can be seen that 

when other processing conditions were kept constant, increasing laser power (from Process 2 to 

Process 6) tends to generate more columnar grains and coarser grain structure; see Fig. 3(a-b) 
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relative to Fig. 4(a-b). However, when increasing laser power and powder flow rate 

simultaneously, the grain structure is almost unchanged; see Fig. 3(a) against Fig. 3(c). 

       

The OM observation on grain structure was found to be consistent with SEM examination (see 

Fig. 5). Moreover, it was found that the bottom regions of the samples show considerable 

-precipitation. This region was found to extend a maximum of 2 mm along the build direction. 

By contrast, the upper regions showed much less presence of α precipitates (Fig. 5(c-d)). The 

inhomogeneous α distribution was further verified by EBSD examination, as shown in Fig. 6(a) 

which shows phase distribution in a transitional region from α precipitates-rich region to upper 

region with much fewer α precipitates present. According to the EBSD result, the area fraction of 

α phase in the sample is around 0.5%. Fig. 6(b) shows the grain structure and orientations in this 

region. Again, a mixture of columnar grains and equiaxed grains could be observed.  

 

Samples from different regions of a build were examined using XRD. The results are shown in 

Fig. 7. Only -phase peaks are present, suggesting that the volume fraction of α phase is quite 

limited (<1%), both at the top and the bottom of the builds. This confirms the percent 

distribution as estimated with scanning electron microscopy.    

 

Despite the heterogeneity in grain structure, the microhardness of the samples did not show a 

significant scatter throughout the samples, as shown in Fig. 8. Instead, all the samples show 

uniform and comparable microhardnesses (~ 280 HV). This is probably due to the fact that the 

grain size in the current samples is generally large (above 100µm) and an indent may have not 

covered sufficient grains.  
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3.3 Influence of in-situ dwelling and annealing on microstructure and microhardness  

Fig. 9 shows the porosity level in the samples that had undergone in-situ dwelling and annealing. 

The porosity in all the samples is still very low (<0.1%), indicating that in-situ dwelling and 

annealing did not have considerable influence on porosity level and structural integrity of 

samples. However, the microstructure seems to be affected significantly. A heterogeneous 

microstructure was observed for all the samples, as shown in Fig. 10. A mixture of columnar and 

equi-axed grains could be observed throughout the samples. The upper regions generally show 

predominant β grains with only limited  precipitation. In contrast, the lower regions are almost 

dominated by  precipitates and laths. The morphology of  phase tends to vary with different 

processes probably due to the different thermal histories associated with different processing 

conditions and sequences (see Fig. 11). This kind of microstructure has led to a pronounced 

transition in microhardness from the lower regions to the upper regions (see Fig. 12). The lower 

regions generally show much higher microhardness as compared with the upper regions, 

probably due to the significant  precipitation.     

 

4. Discussion 

The current experimental results demonstrate that using a sufficient laser power, the build height 

and geometry are mainly affected by the laser scanning speed and powder flow rate. Thus, with 

other processing parameters being kept constant, the increase of either powder flow rate or laser 

scanning speed led to increase in build height. Powder flow rate actually defines the amount of 

powder that would be delivered to the laser focal point and melted by laser beam in a specific 

duration and thus would affect the actual layer thickness. Laser scanning speed affects the 
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amount of molten material that would be captured in a specific area. With lower scanning speed, 

it offers more time for material to drop onto a specific area on the build surface and there would 

be more material accumulation and build up, giving rise to thicker build layers. In contrast, laser 

power was found to show much less influence on build height as long as they are high enough to 

melt powder. This is obvious for Processes 2 and 6, and Processes 3 and 5 where increase of 

laser power did not lead to significant change in build height. This may be mainly due to the fact 

that the laser power did not affect significantly the powder capture rate and captured material 

once it is high enough to melt powder coming to the laser focus point. The influence of Z step on 

build height and quality totally depends on the deviation between the specified Z step and the 

actual building layer thickness. When the deviation is pronounced, the laser focal point would be 

further and further away from the build surfaces with increased build height. This would lead to 

change in powder capture rate and the amount of captured material and thus to the change in 

built layer thickness. This is consistent with previous work [3]. The results suggest that a proper 

combination of processing parameters is essential for successful building of samples with 

required geometry and height. 

  

The current findings also demonstrate that with proper processing conditions, samples with good 

structural integrity (e.g. low porosity) could be achieved by DLD. Actually, the samples shown 

in Fig. 1 all show significantly low porosity level. The common planar or irregular-shaped pores 

which could easily form at the interfaces between adjacent layers due to lack of fusion during 

DLD of α+β Ti-based alloys [3-4] are not observed in the current alloy. This could be attributed 

to the use of high laser power and the good weldability of the current Ti5553 alloy, a single 

phase alloy. The as-fabricated samples were composed of a number of laser deposited beads each 
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of which shows a typical as-cast microstructure with columnar grains developed in their 

peripheral regions (i.e. top and bottom regions) and equiaxed grains in the centre, leading to a 

heterogeneous microstructure throughout the samples. The columnar grains were found to grow 

epitaxially from previous layer into the next layer, suggesting that the grains in the previous layer 

may have acted as nuclei for the development of crystals in the next layer. This process may 

have also been further driven by the preferred heat loss or cooling direction along the build down 

through the substrate. However, the columnar grains did not extend through a whole bead and 

instead equiaxed grains were formed in the centre, suggesting that the thermal gradient between 

the remaining melt and the columnar grains might have become small (which would impede the 

directional growth of columnar grains) and according to the classic solidification theory there 

may be a turbulent convection current in the liquid (which would help melt off tips or arms of the 

columnar grains and bring them into the liquid to act as seed crystals), both of which are 

essential for the formation of equiaxed grains in the bead centre [22]. The turbulent Marangoni 

convection current in the melt pool was possible during DLD given that the powder was blown 

by argon into the melt pool, bringing momentum and turbulence to the pool. With increased 

build height, the fraction and aspect ratio of columnar grains were found to decrease while the 

number of equiaxed grains increased. This is probably due to the fact that with increased build 

height and increased building time, both the substrate and build were getting hotter and hotter 

and thus the thermal gradient between the build and substrate and that within the build itself were 

getting increasingly reduced. This would impede the directional growth of columnar grains and 

promote the development of equiaxed grains. The influence of processing condition on grain 

structure was also noted. Thus, with other processing parameters being kept constant, increase in 

laser power (from Process 2 to 6) led to the coarsening of grains (see Fig. 2 (a,b) and Fig. 3(a,b)). 
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However, when the laser power was increased together with increased powder flow rate (see 

Processes 2 and 8), the grain structure show insignificant change as demonstrated in Fig. 2 (a) 

and (c). This is believed to be due to the fact that the increased powder flow rate would lead to 

more powder captured by the laser beam which requires more energy to get melted. As such, the 

increased fraction of energy due to the increased laser power may have been consumed in 

melting the additional captured powder rather than in promoting grain growth. The result 

suggests that other processing parameters such as powder flow rate could also affect the 

microstructural development. It is therefore concluded that the input energy density (which could 

be defined by laser power, scanning speed, powder flow rate, etc) and the thermal history may 

have determined the microstructural development and thus any processing parameter that would 

affect the energy density and thermal history may show influence on microstructure. This is 

consistent with previous studies [8,13,14,17] which also suggest that the microstructural 

development of Ti-alloys is highly dependent on thermal history. Another microstructural 

characteristic for the current as-fabricated Ti5553 samples is the precipitation of α phase at the 

very bottom region, which may be attributed to the continuous self-annealing effect due to heat 

sink down to the bottom region during fabrication. The current microstructural heterogeneity 

especially in grain structure was found not to cause pronounced scatter in microhardness 

throughout the samples, which could be simply due to the fact that the samples are generally 

dominated by β grains.  

 

In-situ dwelling and annealing were found to lead to significant α precipitation in the lower 

regions in contrast to the predominant β grains in the upper regions. The reason for this 

microstructural transition is not fully understood but may be associated with the thermal histories 
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the samples had experienced. With in-situ dwelling and annealing, it offers more time for α 

precipitation to occur, particularly at the lower regions which are closer to substrate and 

experienced much more cooling cycles than the upper regions. The lower regions should have 

more chances to get to the ageing temperatures (around 600°C) which allows spur of α 

precipitation [19-20]. Due to the small size of the samples (final size is 20x20x20mm) and the 

use of high laser powers for deposition in the current study, the top regions have always been 

kept hot to remain as β phase. The separated microstructures in the lower and upper regions have 

led to a pronounced transition in microhardness between the two regions. The lower regions 

showed much higher microhardness obviously due to the predominance of α phase.  

Future work will focus on more comprehensive mechanical evaluation through tensile, fatigue 

and crack propagation tests to understand the mechanical response of the as-fabricated 

microstructures. Particularly, since the current samples generally contain a mixture of columnar 

and equiaxed grains and the samples fabricated with in-situ dwelling and annealing even show 

different microstructures in different regions of the samples, it is necessary to identify the weak 

link within the heterogeneous microstructure as well as to find out the mechanical 

consistency/scatter in these samples. These will be studied by performing both tensile and fatigue 

tests and by investigating the fracture surfaces and longitudinal sections of tested specimens (to 

study the primary and secondary cracking). In-situ synchrotron X-ray imaging will be performed 

to study the crack and damage development within these samples. These will help reveal the 

scatter in mechanical properties as well as identify the crack initiation sites and fracture 

mechanism of the as-fabricated microstructures. TEM (transmission electron microscopy) 

experiments will be performed on tensile tested samples to study the deformation behaviours 

(dislocation structure) of different microstructural features, particularly to reveal whether 
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heterogeneous deformation has happened within the heterogeneous microstructure.  

 

5. Conclusions  

This study showed that DLD can be optimised to achieve the required build height and low 

porosity in Ti5553 samples. When the laser power is high, the build height mainly depends on 

the laser scanning speed and powder flow rate; further increase in laser power did not affect 

build height obviously but did lead to coarsening of grain structure with other processing 

parameters constant. However, under this condition, the microstructure is heterogeneous, 

containing a mixture of columnar grains and equiaxed grains. The as-fabricated samples were 

dominated by -phase grains except for the bottom regions of the samples where considerable  

precipitates were present. This work identified the benefit of using in-situ dwelling without laser 

scanning and in-situ laser annealing to promote α precipitation in the lower regions of the 

samples, which led to improved microhardnesses that are close to that of forged Ti5553.  
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Table 1 Processing conditions and dimensions of the as-fabricated Ti5553 samples 

Processing 

condition 

or Sample 

Number  

Z step  

(mm) 

Average 

Laser 

power (W) 

Scan 

speed 

(mm/s) 

Powder 

flow rate 

(g/min) 

Expected 

height 

(mm) 

Actual 

build 

height 

(mm) 

Excess or 

under 

build or 

Good  

1 0.6 P Sp F  9 12.4-13.7 Excess  

2 0.6 P Sp+200 F  20  21-22  Good  

3 0.6 P Sp+400 F  20 16.5-17.5 Under  

4  0.6 P Sp+400 F+1.7  20 22.7-24.3 Excess  

5  0.6 P+200 Sp+400 F  20 16-17 Under  

6  0.6  P+200  Sp+200 F  20  20.2-22  Good  

 

7  0.8 P+200 Sp+200 F  20 14.6-16.6 Under  

8  0.8 P+200 Sp+200 F+1.7  20  20.3-23  Good  

9 0.8 P+200 Sp+100 F+1.7  20 23-25.4 Excess 

P is a laser power between 1200-1400W, Sp is a laser scanning speed between 500-700mm/min, F is a powder feed 

rate between 5.0-7.0g/min.  
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Table 2 In-situ dwelling and annealing procedure and conditions  

 Processing procedure and condition 

D30 Deposition + Dwell for 30s with laser off at each layer 

D60 Deposition + Dwell for 60s with laser off at each layer 

DA200 Deposition + Dwell 30s with laser off at each layer + Anneal 200W at each layer 

+Dwell 30s with laser off at each layer +Deposition…… 

DA400 Deposition + Dwell 30s with laser off at each layer +Anneal 400W at each layer 

+Dwell 30s with laser off at each layer +Deposition…… 
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Figure Captions 

Fig. 1 (a) Back-scattered electron SEM image of the as-received Ti-5553 powder particles and (b) 

particle size distribution analysed by a laser scattering particle size analyser  

Fig. 2 (a) The as-fabricated Ti-5553 builds; (b-d) OM micrographs for the builds showing the 

reduced porosity in the builds, (b) Sample 2, Af = 0.01%; (c) Sample 6, Af = 0.02%; (d) Sample 8, 

Af = 0.02%.  

Fig. 3 OM micrographs showing the grain structure at the bottom regions of different builds, (a) 

Sample 2; (b) Sample 6; (c) Sample 8; (d) Schematics showing the typical grain structure at the 

bottom regions of the as-DLDed samples. The broken lines show the boundaries of re-melted 

zones.  

Fig. 4 OM micrographs showing the grain structure in the upper regions of different samples, (a) 

Sample 2; (b) Sample 6; (c-d) Sample 8; (e) Schematics showing the typical microstructure in 

the upper regions of the as-DLDed samples. The dash lines show the boundaries of re-melted 

zones.  

Fig. 5 Secondary electron SEM micrographs for the typical microstructure in the Ti5553 builds 

at (a-b) bottom region; (c-d) upper region.  

Fig. 6 (a) EBSD phase map showing the distribution of α and β phases in transition region; (b) 

EBSD image showing the dominant β-grain structure; (c) the inverse pole figure for the β grain 

structure.  The arrow shows the building direction.  

Fig. 7 XRD patterns of an as-DLDed sample from bottom region and upper region 

Fig. 8 Microhardnesses of as-fabricated Ti-5553 samples along build height, showing (a) sample 

2; (b) sample 6; and (c) sample 8 

Fig. 9 OM micrographs showing the as-polished samples that had been subjected to in-situ 

dwelling and annealing during DLD, (a) sample D30; (b) sample D60; (c) sample DA200; and (d) 

sample DA400. 
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Fig.10 Typical microstructure of samples that experienced in-situ dwelling and annealing during 

DLD, (a) photograph showing the etched samples with pronounced contrast between the upper 

regions and lower regions; (b) secondary electron SEM image showing the upper regions are 

dominated by β-grains; (c-d) secondary electron SEM image showing the lower regions are rich 

of α precipitates and laths.   

Fig. 11 Secondary electron SEM micrographs showing microstructure of the lower regions of 

samples that had underwent different in-situ dwelling and annealing processes; (a) sample D30; 

(b) sample D60; (c) sample DA200; and (d) sample DA400. 

Fig. 12 Microhardnesses of the builds subjected to in-situ dwelling and annealing along build 

height; (a) sample D30; (b) sample D60; (c) sample DA200; and (d) sample DA400. 
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Fig. 8  
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Fig.9  
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Fig. 10  

 

 

 

 

   

   

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

X 

z 

2µm 2µm 

2µm 2µm 



  

 34 

 

 

Fig. 11 

 

 

  

  

 

 

 

 

 

Fig. 12  
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Graphical Abstract 

Microstructural development of Ti5553 during direct laser deposition (DLD) 
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Research Highlights 

 DLD process design leads to the acquisition of low porosity and required build height  

 Build height increases with decreased scanning speed and increased powder flow rate 

 Keeping Z step close to the actual layer thickness is crucial for consistent building 

 The as-DLDed Ti5553 are dominated by mixed columnar and equiaxed grains 

 In-situ dwelling and annealing promote α precipitation which improves microhardness 

 

 




