65 research outputs found

    Topographic variability of the left atrium and pulmonary veins assessed by 3D-CT predicts the recurrence of atrial fibrillation after catheter ablation

    Get PDF
    AbstractBackgroundCatheter ablation (CA) is an established therapy for atrial fibrillation (AF). However, the assessment of anatomical information and predictors of AF recurrence remain unclear. We investigated the relationship between anatomical information on the left atrium (LA) and pulmonary veins (PVs) from three-dimensional computed tomography images and the recurrence of AF after CA.MethodsSixty-seven consecutive AF patients (mean age: 62±10 years, median AF history: 42 (12; 60) months, mean LA size: 41±7mm, paroxysmal: 56%) underwent CA and were followed for 19±10 months. The segmented surface areas (antral, posterior, septal, and lateral) and dimensions (between the anterior and posterior walls, the right inferior PV and mitral annulus [MA], the right superior PV and MA, the left superior PV and MA, and the mitral isthmus) of the LA were evaluated three dimensionally using the NavX system. The cross-sectional areas of the PVs were also evaluated.ResultsAfter the follow-up period, 49 patients (73%) remained free from AF. A multivariate analysis showed that the diameter of the mitral isthmus and cross-sectional area of the right upper PV were associated with AF recurrence (odds ratio: 1.070, CI: 1.02–1.12, p=0.001; odds ratio: 0.41, CI: 0.21–0.77, p=0.006).ConclusionEnlargement of the mitral isthmus and a smaller right superior PV cross-sectional area were associated with AF recurrence

    Binding of myomesin to obscurin-like-1 to the muscle M-band provides a strategy for isoform-specific mechanical protection

    Get PDF
    The sarcomeric cytoskeleton is a network of modular proteins that integrate mechanical and signalling roles. Obscurin, or its homolog obscurin-like-1, bridges the giant ruler titin and the myosin crosslinker myomesin at the M-band. Yet, the molecular mechanisms underlying the physical obscurin(-like-1):myomesin connection, important for mechanical integrity of the M-band, remained elusive. Here, using a combination of structural, cellular, and single-molecule force spectroscopy techniques, we decode the architectural and functional determinants defining the obscurin(-like-1): myomesin complex. The crystal structure reveals a trans-complementation mechanism whereby an incomplete immunoglobulin-like domain assimilates an isoform-specific myomesin interdomain sequence. Crucially, this unconventional architecture provides mechanical stability up to forces of 135 pN. A cellular competition assay in neonatal rat cardiomyocytes validates the complex and provides the rationale for the isoform specificity of the interaction. Altogether, our results reveal a novel binding strategy in sarcomere assembly, which might have implications on muscle nanomechanics and overall M-band organization.We thank the Diamond Light Source and the European Synchrotron Radiation Laboratory for access to MX and SAXS beamlines, respectively. This work was supported by a British Heart Foundation grant (PG/10/67/28527) awarded to R.A.S. and M.G. as well as MRC grant MR/J010456/1 to M.G. and a British Heart Foundation grant (PG/13/50/30426) and EPSRC Fellowship (K00641X/1) to S.G.-M

    Efficacy of capillary pattern type IIIA/IIIB by magnifying narrow band imaging for estimating depth of invasion of early colorectal neoplasms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Capillary patterns (CP) observed by magnifying Narrow Band Imaging (NBI) are useful for differentiating non-adenomatous from adenomatous colorectal polyps. However, there are few studies concerning the effectiveness of magnifying NBI for determining the depth of invasion in early colorectal neoplasms. We aimed to determine whether CP type IIIA/IIIB identified by magnifying NBI is effective for estimating the depth of invasion in early colorectal neoplasms.</p> <p>Methods</p> <p>A series of 127 consecutive patients with 130 colorectal lesions were evaluated from October 2005 to October 2007 at the National Cancer Center Hospital East, Chiba, Japan. Lesions were classified as CP type IIIA or type IIIB according to the NBI CP classification. Lesions were histopathologically evaluated. Inter and intraobserver variabilities were assessed by three colonoscopists experienced in NBI.</p> <p>Results</p> <p>There were 15 adenomas, 66 intramucosal cancers (pM) and 49 submucosal cancers (pSM): 16 pSM superficial (pSM1) and 33 pSM deep cancers (pSM2-3). Among lesions diagnosed as CP IIIA 86 out of 91 (94.5%) were adenomas, pM-ca, or pSM1; among lesions diagnosed as CP IIIB 28 out of 39 (72%) were pSM2-3. Sensitivity, specificity and diagnostic accuracy of the CP type III for differentiating pM-ca or pSM1 (<1000 μm) from pSM2-3 (≥1000 μm) were 84.8%, 88.7 % and 87.7%, respectively. Interobserver variability: κ = 0.68, 0.67, 0.72. Intraobserver agreement: κ = 0.79, 0.76, 0.75</p> <p>Conclusion</p> <p>Identification of CP type IIIA/IIIB by magnifying NBI is useful for estimating the depth of invasion of early colorectal neoplasms.</p

    Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation

    Get PDF
    Background Social amoebae are lower eukaryotes that inhabit the soil. They are characterized by the construction of a starvation-induced multicellular fruiting body with a spore ball and supportive stalk. In most species, the stalk is filled with motile stalk cells, as represented by the model organism Dictyostelium discoideum, whose developmental mechanisms have been well characterized. However, in the genus Acytostelium, the stalk is acellular and all aggregated cells become spores. Phylogenetic analyses have shown that it is not an ancestral genus but has lost the ability to undergo cell differentiation. Results We performed genome and transcriptome analyses of Acytostelium subglobosum and compared our findings to other available dictyostelid genome data. Although A. subglobosum adopts a qualitatively different developmental program from other dictyostelids, its gene repertoire was largely conserved. Yet, families of polyketide synthase and extracellular matrix proteins have not expanded and a serine protease and ABC transporter B family gene, tagA, and a few other developmental genes are missing in the A. subglobosum lineage. Temporal gene expression patterns are astonishingly dissimilar from those of D. discoideum, and only a limited fraction of the ortholog pairs shared the same expression patterns, so that some signaling cascades for development seem to be disabled in A. subglobosum. Conclusions The absence of the ability to undergo cell differentiation in Acytostelium is accompanied by a small change in coding potential and extensive alterations in gene expression patterns

    Developments on the Uji Proton Microprobe (A. NATURAL SCIENCE)

    Get PDF
    The Uji scanning microprobe system has been developed with two doublets configuration. A microcomputer was used for controlling the deflecting voltage dividing the scanning area of 1mm×1mm to 32×32 points and for processing RBS data in MCS mode. The beam size was reduced to 8×34μm^2 with current of &acd;1nA. Extraction of this micro beam through a nozzle into the atmosphere was carried out successfully
    corecore