120 research outputs found

    ICONE 17 -75179 Heat Transfer Experiments of Mini-Tube Bank

    Get PDF
    ABSTRACT Heat transfer and flow behavior in the mini rod bank were examined. The tubes are simulated with a 1 mm diameter nickel wire. The tube bank was composed of the 5×5 square-lattice array and the 5×5 staggered array. The tube banks were arranged in the flow channel of 30 mm wide or 15 mm wide, 15 mm high and 480 mm long. Water was used as the test fluid. A flow rate was varied in the range of the Reynolds number Re = uD/ν of 1 ~ 800, where D is the tube diameter. The approaching velocity of fluid in the channel was in the range of 0.0036 m/s ~ 0.68 m/s. Experiments were performed at atmospheric pressure. The measured heat transfer coefficients of the rows after the second row were lower than those of the first row and the difference between those increased as the Reynolds number was increased. The difference turned to decrease around Reynolds number = 50 in the 15 mm wide test section experiments of the square -lattice array and around Reynolds number = 200 in the 30 mm wide test section experiments of the staggered array. The heat transfer coefficients reached back to the first row value around Re = 400 in the former experiments. It was confirmed through the present results and the previous results that the heat transfer in the rear rows is deteriorated by the flow stagnation in the wake region of the preceding rod and the deterioration is recovered as the Reynolds number is increased since the wake region becomes disturbed

    rbcL and matK Earn Two Thumbs Up as the Core DNA Barcode for Ferns

    Get PDF
    BACKGROUND: DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the fern's life history--an endeavor previously impossible--will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade--Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)--to further evaluate the resolving power of these loci. PRINCIPAL FINDINGS: Our results clearly demonstrate the value of matK data, previously unavailable in ferns because of difficulties in amplification due to a major rearrangement of the plastid genome. With its high sequence variation, matK complements rbcL to provide a two-locus barcode with strong resolving power. With sequence variation comparable to matK, trnL-F appears to be a suitable alternative barcode region in ferns, and perhaps should be added to the core barcode region if universal primer development for matK fails. In contrast, trnH-psbA shows dramatically reduced sequence variation for the majority of ferns. This is likely due to the translocation of this segment of the plastid genome into the inverted repeat regions, which are known to have a highly constrained substitution rate. CONCLUSIONS: Our study provides the first endorsement of the two-locus barcode (rbcL+matK) in ferns, and favors trnL-F over trnH-psbA as a potential back-up locus. Future work should focus on gathering more fern matK sequence data to facilitate universal primer development

    Evolution of genome space occupation in ferns: linking genome diversity and species richness

    Get PDF
    Background and Aims:The dynamics of genome evolution caused by whole genome duplications and other processes are hypothesized to shape the diversification of plants and thus contribute to the astonishing variation in species richness among the main lineages of land plants. Ferns, the second most species rich lineages of land plants are highly suitable to test this hypothesis because of several unique features that distinguish fern genomes from those of seed plants. In this study, we tested the hypothesis that genome diversity and disparity shape fern species diversity by recording several parameters related to genome size and chromosome number.Methods:We conducted de novo measurement of DNA C-values across the fern phylogeny to reconstruct the phylogenetic history of the genome space occupation in ferns by integrating genomic parameters such as genome size, chromosome number, and average DNA amount per chromosome into a time-scaled phylogenetic framework. Using phylogenetic generalized least square methods, we determined correlations between chromosome number and genome size, species diversity and evolutionary rates of their transformation.Key ResultsThe measurements of DNA C-values for 233 species more than doubled the taxon coverage from ca. 2.2% in previous studies to 5.3% of extant diversity. The dataset documented not only substantial differences in the accumulation of genomic diversity and disparity among the major lineages of ferns but also recovered support the predicted correlation between species diversity and the dynamics of genome evolution.Conclusions:Our results demonstrated substantial genome disparity among different groups in ferns and supported the prediction that alterations of reproductive modes alter trends of genome evolution. Finally, we recovered evidence for a close link between the dynamics of genome evolution and species diversity in ferns for the first time.Fil: Fujiwara, Tao. Xishuangbanna Tropical Botanical Garden; ChinaFil: Liu, Hongmei. Xishuangbanna Tropical Botanical Garden; ChinaFil: Meza Torres, Esteban Ismael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaFil: Morero, Rita Ema. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Vega, Alvaro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; ArgentinaFil: Liang, Yuehwei. Xishuangbanna Tropical Botanical Garden; ChinaFil: Ebihara, Atsushi. National Museum Of Nature And Sciences, Tsukuba, Japan; JapónFil: Leitch, Ilia J.. Royal Botanic Gardens; Reino UnidoFil: Schneider, Harald. Xishuangbanna Tropical Botanical Garden; Chin

    The Relationship between Mating System and Genetic Diversity in Diploid Sexual Populations of Cyrtomium falcatum in Japan

    Get PDF
    The impact of variation in mating system on genetic diversity is a well-debated topic in evolutionary biology. The diploid sexual race of Cyrtomium falcatum (Japanese holly fern) shows mating system variation, i.e., it displays two different types of sexual expression (gametangia formation) in gametophytes: mixed (M) type and separate (S) type. We examined whether there is variation in the selfing rate among populations of this species, and evaluated the relationship between mating system, genetic diversity and effective population size using microsatellites. In this study, we developed eight new microsatellite markers and evaluated genetic diversity and structure of seven populations (four M-type and three S-type). Past effective population sizes (Ne) were inferred using Approximate Bayesian computation (ABC). The values of fixation index (FIS), allelic richness (AR) and gene diversity (h) differed significantly between the M-type (FIS: 0.626, AR: 1.999, h: 0.152) and the S-type (FIS: 0.208, AR: 2.718, h: 0.367) populations (when admixed individuals were removed from two populations). Although evidence of past bottleneck events was detected in all populations by ABC, the current Ne of the M-type populations was about a third of that of the S-type populations. These results suggest that the M-type populations have experienced more frequent bottlenecks, which could be related to their higher colonization ability via gametophytic selfing. Although high population differentiation among populations was detected (FST = 0.581, F’ST = 0.739), there was no clear genetic differentiation between the M- and S-types. Instead, significant isolation by distance was detected among all populations. These results suggest that mating system variation in this species is generated by the selection for single spore colonization during local extinction and recolonization events and there is no genetic structure due to mating system

    Role of Dok-1 and Dok-2 in Myeloid Homeostasis and Suppression of Leukemia

    Get PDF
    Dok-1 and Dok-2 are closely related rasGAP-associated docking proteins expressed preferentially in hematopoietic cells. Although they are phosphorylated upon activation of many protein tyrosine kinases (PTKs), including those coupled with cytokine receptors and oncogenic PTKs like Bcr-Abl, their physiological roles are largely unidentified. Here, we generated mice lacking Dok-1 and/or Dok-2, which included the double-deficient mice succumbed to myeloproliferative disease resembling human chronic myelogenous leukemia (CML) and chronic myelomonocytic leukemia. The double-deficient mice displayed medullary and extramedullary hyperplasia of granulocyte/macrophage progenitors with leukemic potential, and their myeloid cells showed hyperproliferation and hypo-apoptosis upon treatment and deprivation of cytokines, respectively. Consistently, the mutant myeloid cells showed enhanced Erk and Akt activation upon cytokine stimulation. Moreover, loss of Dok-1 and/or Dok-2 induced blastic transformation of chronic phase CML-like disease in mice carrying the bcr-abl gene, a cause of CML. These findings demonstrate that Dok-1 and Dok-2 are key negative regulators of cytokine responses and are essential for myeloid homeostasis and suppression of leukemia

    Molecular Species Identification with Rich Floristic Sampling: DNA Barcoding the Pteridophyte Flora of Japan

    Get PDF
    BACKGROUND: DNA barcoding is expected to be an effective identification tool for organisms with heteromorphic generations such as pteridophytes, which possess a morphologically simple gametophyte generation. Although a reference data set including complete coverage of the target local flora/fauna is necessary for accurate identification, DNA barcode studies including such rich taxonomic sampling on a countrywide scale are lacking. METHODOLOGY/PRINCIPAL FINDINGS: The Japanese pteridophyte flora (733 taxa including subspecies and varieties) was used to test the utility of two plastid DNA barcode regions (rbcL and trnH-psbA) with the intention of developing an identification system for native gametophytes. DNA sequences were obtained from each of 689 (94.0%) taxa for rbcL and 617 (84.2%) taxa for trnH-psbA. Mean interspecific divergence values across all taxon pairs (K2P genetic distances) did not reveal a significant difference in rate between trnH-psbA and rbcL, but mean K2P distances of each genus showed significant heterogeneity according to systematic position. The minimum fail rate of taxon discrimination in an identification test using BLAST (12.52%) was obtained when rbcL and trnH-psbA were combined, and became lower in datasets excluding infraspecific taxa or apogamous taxa, or including sexual diploids only. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the overall effectiveness of DNA barcodes for species identification in the Japanese pteridophyte flora. Although this flora is characterized by a high occurrence of apogamous taxa that pose a serious challenge to identification using DNA barcodes, such taxa are limited to a small number of genera, and only minimally detract from the overall success rate. In the case that a query sequence is matched to a known apogamous genus, routine species identification may not be possible. Otherwise, DNA barcoding is a practical tool for identification of most Japanese pteridophytes, and is especially anticipated to be helpful for identification of non-hybridizing gametophytes

    Dietary patterns associated with fall-related fracture in elderly Japanese: a population based prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diet is considered an important factor for bone health, but is composed of a wide variety of foods containing complex combinations of nutrients. Therefore we investigated the relationship between dietary patterns and fall-related fractures in the elderly.</p> <p>Methods</p> <p>We designed a population-based prospective survey of 1178 elderly people in Japan in 2002. Dietary intake was assessed with a 75-item food frequency questionnaire (FFQ), from which dietary patterns were created by factor analysis from 27 food groups. The frequency of fall-related fracture was investigated based on insurance claim records from 2002 until 2006. The relationship between the incidence of fall-related fracture and modifiable factors, including dietary patterns, were examined. The Cox proportional hazards regression model was used to examine the relationships between dietary patterns and incidence of fall-related fracture with adjustment for age, gender, Body Mass Index (BMI) and energy intake.</p> <p>Results</p> <p>Among 877 participants who agreed to a 4 year follow-up, 28 suffered from a fall-related fracture. Three dietary patterns were identified: mainly vegetable, mainly meat and mainly traditional Japanese. The moderately confirmed (see statistical methods) groups with a Meat pattern showed a reduced risk of fall-related fracture (Hazard ratio = 0.36, 95% CI = 0.13 - 0.94) after adjustment for age, gender, BMI and energy intake. The Vegetable pattern showed a significant risk increase (Hazard ratio = 2.67, 95% CI = 1.03 - 6.90) after adjustment for age, gender and BMI. The Traditional Japanese pattern had no relationship to the risk of fall-related fracture.</p> <p>Conclusions</p> <p>The results of this study have the potential to reduce fall-related fracture risk in elderly Japanese. The results should be interpreted in light of the overall low meat intake of the Japanese population.</p
    corecore