10 research outputs found

    Social defeat stress impairs systemic iron metabolism by activating the hepcidin–ferroportin axis

    Get PDF
    Kasahara E., Nakamura A., Morimoto K., et al. Social defeat stress impairs systemic iron metabolism by activating the hepcidin–ferroportin axis. FASEB BioAdvances 6, 263 (2024); https://doi.org/10.1096/fba.2024-00071.Chronic psychological stress has been reported to decrease circulating iron concentrations and impair hematopoiesis. However, the underlying mechanisms remain unclear. This study aimed to investigate the effects of psychological stress on biological iron metabolism by using the social defeat stress (SDS) model, a widely used model of depression. Compared with control mice, mice subjected to SDS (SDS mice) had lower social interaction (SI) behavior. The SDS mice also showed impaired hematopoiesis, as evidenced by reduced circulating red blood cell counts, elevated reticulocyte counts, and decreased plasma iron levels. In the SDS mice, the iron contents in the bone marrow decreased, whereas those in the spleen increased, suggesting dysregulation in systemic iron metabolism. The concentrations of plasma hepcidin, an important regulator of systemic iron homeostasis, increased in the SDS mice. Meanwhile, the concentrations of ferroportin, an iron transport protein negatively regulated by hepcidin, were lower in the spleen and duodenum of the SDS mice than in those of the control mice. Treatment with dalteparin, a hepcidin inhibitor, prevented the decrease in plasma iron levels in the SDS mice. The gene expression and enzyme activity of furin, which converts the precursor hepcidin to active hepcidin, were high and positively correlated with plasma hepcidin concentration. Thus, furin activation might be responsible for the increased plasma hepcidin concentration. This study is the first to show that psychological stress disrupts systemic iron homeostasis by activating the hepcidin–ferroportin axis. Consideration of psychological stressors might be beneficial in the treatment of diseases with iron-refractory anemia

    Gene expression profiling in peripheral blood leukocytes as a new approach for assessment of human stress response

    Get PDF
    Stress is the coordinated physiological processes to maintain a dynamic equilibrium under stressful conditions. The equilibrium is threatened by certain physiological and psychological stressors. Stressors trigger physiological, behavioural, and metabolic responses that are aimed at reinstating homeostasis. The hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system play an essential role in the stress response. Excessive, prolonged, or inadequate response that is termed as “allostasis” or “allostatic load” leads to pathological outcomes. Dysregulation of the HPA axis activity is involved in the pathogenesis of stress related disorders including major depression. The complex brain-immune-endocrine network regulates the HPA axis, and hereditary predisposition as well as environmental factors such as traumatic experiences in early life also modifies the capacity of an individual to cope. Therefore, it is difficult to correctly assess the complex stress response. We have developed a microarray carrying 1,467 cDNAs that were selected to specifically measure stress response in peripheral blood leukocytes. Using this tool, we have succeeded to objectively assess individual response to acute psychological stress and to detect unique expression profiles in patients with depression. Gene expression profile in peripheral blood leukocytes may be a potentially useful for the detection of disease-associated, abnormal stress responses

    IL-18 ; a cytokine translates a stress into medical science

    Get PDF
    Psychological/physical stresses have been reported to exacerbate auto-immune and inflammatory diseases. To clarify a mechanism by which non-inflammatory stresses disrupt host defenses, responses to immobilization stress in mice were investigated, focusing on the role of a multifunctional cytokine, interleukin-18 (IL-18). In the adrenal cortex, the stress induced IL-18 precursor proteins (pro-IL-18) via ACTH and a superoxide-mediated caspase-1 activation pathway, resulting in conversion of pro-IL-18 to the mature form which was released into plasma. Inhibitors of caspase-1, reactive oxygen species and P38 MAPK prevented stress-induced accumulation of plasma IL-18. These inhibitors also blocked stress-induced IL-6 expression. This, together with the observation that IL-6was not induced in stressed-IL-18 deficient mice, showed that IL-6 induction by stress is dependent on IL-18. In stressed organisms, IL-18 may influence pathological and physiological processes. Controlling the caspase-1 activating pathway to suppress IL-18 levels may provide preventative means against stress-related disruption of host defenses

    A Stress-Induced, Superoxide-Mediated Caspase-1 Activation Pathway Causes Plasma IL-18 Upregulation

    Get PDF
    SummaryPsychological/physical stresses are known to cause relapses of autoimmune and inflammatory diseases. To reveal a mechanism by which noninflammatory stresses affect host defenses, responses to immobilization stress in mice were investigated, focusing on the role of a multifunctional cytokine, interleukin-18 (IL-18). In the adrenal cortex, the stress induced IL-18 precursor proteins (pro-IL-18) via adrenocorticotropic hormone (ACTH) and a superoxide-mediated caspase-1 activation pathway, resulting in conversion of pro-IL-18 to the mature form, which was released into plasma. Inhibitors of caspase-1, reactive oxygen species, and P38 mitogen-activated protein kinase (MAPK) suppressed stress-induced accumulation of plasma IL-18. These inhibitors also blocked stress-induced IL-6 expression. This, together with the observation that IL-6 was not induced in IL-18-deficient mice, showed that IL-6 induction by stress is dependent on IL-18. In stressed organisms, IL-18 may influence pathological and physiological processes. Controlling the caspase-1 activating pathway to suppress IL-18 levels may provide preventative means against stress-related disruption of host defenses

    Social defeat stress impairs systemic iron metabolism by activating the hepcidin–ferroportin axis

    No full text
    Abstract Chronic psychological stress has been reported to decrease circulating iron concentrations and impair hematopoiesis. However, the underlying mechanisms remain unclear. This study aimed to investigate the effects of psychological stress on biological iron metabolism by using the social defeat stress (SDS) model, a widely used model of depression. Compared with control mice, mice subjected to SDS (SDS mice) had lower social interaction (SI) behavior. The SDS mice also showed impaired hematopoiesis, as evidenced by reduced circulating red blood cell counts, elevated reticulocyte counts, and decreased plasma iron levels. In the SDS mice, the iron contents in the bone marrow decreased, whereas those in the spleen increased, suggesting dysregulation in systemic iron metabolism. The concentrations of plasma hepcidin, an important regulator of systemic iron homeostasis, increased in the SDS mice. Meanwhile, the concentrations of ferroportin, an iron transport protein negatively regulated by hepcidin, were lower in the spleen and duodenum of the SDS mice than in those of the control mice. Treatment with dalteparin, a hepcidin inhibitor, prevented the decrease in plasma iron levels in the SDS mice. The gene expression and enzyme activity of furin, which converts the precursor hepcidin to active hepcidin, were high and positively correlated with plasma hepcidin concentration. Thus, furin activation might be responsible for the increased plasma hepcidin concentration. This study is the first to show that psychological stress disrupts systemic iron homeostasis by activating the hepcidin–ferroportin axis. Consideration of psychological stressors might be beneficial in the treatment of diseases with iron‐refractory anemia
    corecore