18 research outputs found

    BRCA1 Directs the Repair Pathway to Homologous Recombination by Promoting 53BP1 Dephosphorylation

    Get PDF
    Summary: BRCA1 promotes homologous recombination (HR) by activating DNA-end resection. By contrast, 53BP1 forms a barrier that inhibits DNA-end resection. Here, we show that BRCA1 promotes DNA-end resection by relieving the 53BP1-dependent barrier. We show that 53BP1 is phosphorylated by ATM in S/G2 phase, promoting RIF1 recruitment, which inhibits resection. 53BP1 is promptly dephosphorylated and RIF1 released, despite remaining unrepaired DNA double-strand breaks (DSBs). When resection is impaired by CtIP/MRE11 endonuclease inhibition, 53BP1 phosphorylation and RIF1 are sustained due to ongoing ATM signaling. BRCA1 depletion also sustains 53BP1 phosphorylation and RIF1 recruitment. We identify the phosphatase PP4C as having a major role in 53BP1 dephosphorylation and RIF1 release. BRCA1 or PP4C depletion impairs 53BP1 repositioning, EXO1 recruitment, and HR progression. 53BP1 or RIF1 depletion restores resection, RAD51 loading, and HR in PP4C-depleted cells. Our findings suggest that BRCA1 promotes PP4C-dependent 53BP1 dephosphorylation and RIF1 release, directing repair toward HR. : Following induction of DNA double-strand break, a pro-end-joining environment is created in G2 by transient 53BP1 phosphorylation and RIF1 recruitment. Here, Isono et al. show that, if timely repair does not ensue, BRCA1 promotes 53BP1 dephosphorylation and RIF1 release, favoring repair by homologous recombination. Keywords: ATM, DNA-end resection, BRCA1, 53BP1, RIF1, PP4C, NHEJ, H

    Branchpoints as potential targets of exon-skipping therapies for genetic disorders

    No full text
    Fukutin (FKTN) c.647+2084G>T creates a pseudo-exon with a premature stop codon, which causes Fukuyama congenital muscular dystrophy (FCMD). We aimed to ameliorate aberrant splicing of FKTN caused by this variant. We screened compounds focusing on splicing regulation using the c.647+2084G>T splicing reporter and discovered that the branchpoint, which is essential for splicing reactions, could be a potential therapeutic target. To confirm the effectiveness of branchpoints as targets for exon skipping, we designed branchpoint-targeted antisense oligonucleotides (BP-AONs). This restored normal FKTN mRNA and protein production in FCMD patient myotubes. We identified a functional BP by detecting splicing intermediates and creating BP mutations in the FKTN reporter gene; this BP was non-redundant and sufficiently blocked by BP-AONs. Next, a BP-AON was designed for a different FCMD-causing variant, which induces pathogenic exon trapping by a common SINE-VNTR-Alu-type retrotransposon. Notably, this BP-AON also restored normal FKTN mRNA and protein production in FCMD patient myotubes. Our findings suggest that BPs could be potential targets in exon-skipping therapeutic strategies for genetic disorders

    Cryptotanshinone is a candidate therapeutic agent for interstitial lung disease associated with a BRICHOS-domain mutation of SFTPC

    Get PDF
    Summary: Interstitial lung disease (ILD) represents a large group of diseases characterized by chronic inflammation and fibrosis of the lungs, for which therapeutic options are limited. Among several causative genes of familial ILD with autosomal dominant inheritance, the mutations in the BRICHOS domain of SFTPC cause protein accumulation and endoplasmic reticulum stress by misfolding its proprotein. Through a screening system using these two phenotypes in HEK293 cells and evaluation using alveolar epithelial type 2 (AT2) cells differentiated from patient-derived induced pluripotent stem cells (iPSCs), we identified Cryptotanshinone (CPT) as a potential therapeutic agent for ILD. CPT decreased cell death induced by mutant SFTPC overexpression in A549 and HEK293 cells and ameliorated the bleomycin-induced contraction of the matrix in fibroblast-dependent alveolar organoids derived from iPSCs with SFTPC mutation. CPT and this screening strategy can apply to abnormal protein-folding-associated ILD and other protein-misfolding diseases
    corecore