515 research outputs found

    The Composition of Titan's Lower Atmosphere and Simple Surface Volatiles as Measured by the Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer Experiment

    Get PDF
    The Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer (GCMS) determined the composition of the Titan atmosphere from ~140km altitude to the surface. After landing, it returned composition data of gases evaporated from the surface. Height profiles of molecular nitrogen (N2), methane (CH4) and molecular hydrogen (H2) were determined. Traces were detected on the surface of evaporating methane, ethane (C2H6), acetylene (C2H2), cyanogen (C2N2) and carbon dioxide (CO2). The methane data showed evidence that methane precipitation occurred recently. The methane mole fraction was (1.48+/-0.09) x 10(exp -2) in the lower stratosphere (139.8 km to 75.5 km) and (5.65+/-0.18) x 10(exp -2) near the surface (6.7 km to the surface). The molecular hydrogen mole fraction was (1.01+/-0.16) x 10(exp -3) in the atmosphere and (9.90+/-0.17) x 10(exp -4) on the surface. Isotope ratios were 167.7+/-0.6 for N-14/N-15 in molecular nitrogen, 91.1+/-1.4 for C-12/C-13 in methane and (1.35+/-0.30) x 10(exp -4) for D/H in molecular hydrogen. The mole fractions of Ar-36 and radiogenic Ar-40 are (2.1+/-0.8) x 10(exp -7) and (3.39 +/-0.12) x 10(exp -5) respectively. Ne-22 has been tentatively identified at a mole fraction of (2.8+/-2.1) x 10(exp -7) Krypton and xenon were below the detection threshold of 1 x 10(exp -8) mole fraction. Science data were not retrieved from the gas chromatograph subsystem as the abundance of the organic trace gases in the atmosphere and on the ground did not reach the detection threshold. Results previously published from the GCMS experiment are superseded by this publication

    The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations

    Get PDF
    The upper bound of 50 parts per trillion by volume for Mars methane above 5 km established by the ExoMars Trace Gas Orbiter, substantially lower than the 410 parts per trillion by volume average measured overnight by the Curiosity Rover, places a strong constraint on the daytime methane flux at the Gale crater. We propose that these measurements may be largely reconciled by the inhibition of mixing near the surface overnight, whereby methane emitted from the subsurface accumulates within meters of the surface before being mixed below detection limits at dawn. A model of this scenario allows the first precise calculation of microseepage fluxes at Gale to be derived, consistent with a constant 1.5 à 10â 10 kg·mâ 2·solâ 1 (5.4 à 10â 5 tonnes·kmâ 2·yearâ 1) source at depth. Under this scenario, only 2.7 à 104 km2 of Mars’s surface may be emitting methane, unless a fast destruction mechanism exists.Plain Language SummaryThe ExoMars Trace Gas Orbiter and the Curiosity Rover have recorded different amounts of methane in the atmosphere on Mars. The Trace Gas Orbiter measured very little methane (<50 parts per trillion by volume) above 5 km in the sunlit atmosphere, while Curiosity measured substantially more (410 parts per trillion by volume) near the surface at night. In this paper we describe a framework which explains both measurements by suggesting that a small amount of methane seeps out of the ground constantly. During the day, this small amount of methane is rapidly mixed and diluted by vigorous convection, leading to low overall levels within the atmosphere. During the night, convection lessens, allowing methane to build up near the surface. At dawn, convection intensifies and the nearâ surface methane is mixed and diluted with much more atmosphere. Using this model and methane concentrations from both approaches, we are ableâ for the first timeâ to place a single number on the rate of seepage of methane at Gale crater which we find equivalent to 2.8 kg per Martian day. Future spacecraft measuring methane near the surface of Mars could determine how much methane seeps out of the ground in different locations, providing insight into what processes create that methane in the subsurface.Key PointsNighttime SAMâ TLS seasonal cycle enrichment measurements and TGO sunset/sunrise measurements are not in oppositionMicroseepage fluxes must be local to Gale, range from 0.82 to 4.6 kg/sol, and are consistent with a constant source at depthLittle of Mars experiences microseepage unless a fast destruction mechanism exists or Gale is very unusualPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151840/1/grl59471-sup-0001-2019GL083800-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151840/2/grl59471_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151840/3/grl59471.pd

    Mars Atmospheric Escape Recorded by H, C and O Isotope Ratios in Carbon Dioxide and Water Measured by the Sam Tunable Laser Spectrometer on the Curiosity Rover

    Get PDF
    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biological activity [2]. For Mars, measurements to date have indicated enrichment in all the heavier isotopes consistent with atmospheric escape processes, but with uncertainty too high to tie the results with the more precise isotopic ratios achieved from SNC meteoritic analyses. We will present results to date of H, C and O isotope ratios in CO2 and H2O made to high precision (few per mil) using the Tunable Laser Spectrometer (TLS) that is part of the Sample Analysis at Mars (SAM) instrument suite on MSL s Curiosity Rover

    Mars methane detection and variability at Gale crater

    Get PDF
    Reports of plumes or patches of methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From in situ measurements made over a 20-month period by the tunable laser spectrometer of the Sample Analysis at Mars instrument suite on Curiosity at Gale crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period (where 1 sol is a martian day), we observed elevated levels of methane of 7.2 ± 2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source

    Trace constituents in the middle atmosphere by high resolution UV spectroscopy

    Get PDF
    An array of 5 autonomous spectrometers, the imaging spectrometric observatory covers a broad wavelength range (approximately 200 to 12,000 A), has a resolution selectable down to approximately 0.5 A, and a dynamic range of approximately 10 to the 7th power and is designed to select experiment measurement sequences by software control. Because current models of thermospheric ionic processes produce too much N2(+) ionization, the N2(+) reaction with O and the chemistry of metastable (N(+) ions and of O2(+) ions are objects of study on Spacelab 1

    Hydrogen Isotopic Composition of Water in the Martian Atmosphere and Released from Rocknest Fines

    Get PDF
    The Mars Science Laboratory Curiosity rover sampled the aeolian bedform called Rocknest as its first solid samples to be analyzed by the analytical instruments CheMin and SAM. The instruments ingested aliquots from a sieved sample of less than 150 micrometer grains. As discussed in other reports at this conference [e.g., 1], CheMin discovered many crystalline phases, almost all of which are igneous minerals, plus some 10s of percent of x-ray amorphous material. The SAM instrument is focused on understanding volatiles and possible organics in the fines, performing evolved gas analysis (EGA) with the SAM quadrapole mass spectrometer (QMS), isotope measurements using both the QMS and the tunable laser spectrometer (TLS), which is sensitive to CO2, water and methane, and organics with the gas chromatograph mass spectrometer (GCMS). As discussed in the abstract by Franz et al. [2] and others, EGA of Rocknest fines revealed the presence of significant amounts of H2O as well as O-, C- and S-bearing materials. SAM has also tasted the martian atmosphere several times, analyzing the volatiles in both the TLS and QMS [e.g., 3,4]. This abstract will focus on presentation of initial hydrogen isotopic data from the TLS for Rocknest soils and the atmosphere, and their interpretation. Data for CO2 isotopes and O isotopes in water are still being reduced, but should be available by at the conference

    Possible Detection of Nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument

    Get PDF
    Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N2). However, it has been lost by sputtering and photochemical loss to space [1, 2], impact erosion [3], and chemical oxidation to nitrates [4]. Nitrates, produced early in Mars history, are later decomposed back into N2 by the current impact flux [5], making possible a nitrogen cycle on Mars. It is estimated that a layer of about 3 m of pure NaNO3 should be distributed globally on Mars [5]. Nitrates are a fundamental source for nitrogen to terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but was unable to detect evolved N-containing species by TEGA and the MECA WCL [6]. Nitrates have been tentatively identified in the Nakhla meteorite [7]. The purpose of this work is to determine if nitrates were detected in first solid sample (Rocknest) in Gale Crater examined by the SAM instrument

    The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe

    Full text link
    Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species ( including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial Ar-36, and the radiogenic isotope Ar-40, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62703/1/nature04122.pd
    corecore