1,103 research outputs found

    Self-leadership Strategies and Subjective Measures of Entrepreneur Success

    Get PDF
    Self-leadership refers to a self-influence process consisting of behavioral and cognitive strategies intended to improve personal effectiveness (Neck & Houghton, 2006). These strategies fall into three categories – behavior-focused strategies, constructive thought pattern strategies, and natural reward strategies. Research on self-leadership has shown evidence of positive outcomes such as job performance and job satisfaction (Frayne & Geringer, 2000; Harari et al., 2021; Prussia et al., 1998). Due to the variety of ways entrepreneurs measure success, and based on the numerous desirable outcomes of self-leadership strategies, it is important to explore these strategies as potential predictors of entrepreneur success. In a review of the literature, research to examine the three types of self-leadership strategies as potential predictors of entrepreneur success was not found. D’Intino et al. (2007) reviewed the literature on self-leadership to suggest that these strategies can help entrepreneurs achieve success; however, an empirical study to validate a predictive relationship was not identified from the literature review. The purpose of this quantitative survey study was to explore relationships between self-leadership strategies and subjective measures of success in entrepreneurs. Participants with at least three years of experience and in an entrepreneurial or business leadership role at the time of participation were recruited through the LinkedIn group, Survey Exchange, and SurveyCircle, and data were collected via online survey questionnaires. Implications include an understanding of specific strategies that are more likely to influence positive outcomes most important to those in entrepreneur and business leadership roles

    Research highlights of the global modeling and simulation branch for 1986-1987

    Get PDF
    This document provides a summary of the research conducted in the Global Modeling and Simulation Branch and highlights the most significant accomplishments in 1986 to 1987. The Branch has been the focal point for global weather and climate prediction research in the Laboratory for Atmospheres through the retrieval and use of satellite data, the development of global models and data assimilation techniques, the simulation of future observing systems, and the performance of atmospheric diagnostic studies

    Zero NeRF: Registration with Zero Overlap

    Full text link
    We present Zero-NeRF, a projective surface registration method that, to the best of our knowledge, offers the first general solution capable of alignment between scene representations with minimal or zero visual correspondence. To do this, we enforce consistency between visible surfaces of partial and complete reconstructions, which allows us to constrain occluded geometry. We use a NeRF as our surface representation and the NeRF rendering pipeline to perform this alignment. To demonstrate the efficacy of our method, we register real-world scenes from opposite sides with infinitesimal overlaps that cannot be accurately registered using prior methods, and we compare these results against widely used registration methods

    What are the repercussions of disclosing a medical error?

    Get PDF
    Physicians and their staff may experience a resolution of anxiety and guilt that can improve their well-being (strength of recommendation [SOR]: C, based on survey data). Full disclosure has little effect, however, on the likelihood that an injured patient will seek legal counsel (SOR: C, based on survey data). Successful disclosure of a medical error can improve a patient's confidence in the physician and lead to improved outcomes (SOR: C, based on expert opinion)

    Modelling the Inorganic Bromine Partitioning in the Tropical Tropopause over the Pacific Ocean

    Get PDF
    The stratospheric inorganic bromine burden (Bry) arising from the degradation of brominated very short-lived organic substances (VSL org ), and its partitioning between reactive and reservoir species, is needed for a comprehensive assessment of the ozone depletion potential of brominated trace gases. Here we present modelled inorganic bromine abundances over the Pacific tropical tropopause based on aircraft observations of VSL org of two campaigns of the Airborne Tropical TRopopause EXperiment (ATTREX 2013 carried out over eastern Pacific and ATTREX 2014 carried out over the western Pacific) and chemistry-climate simulations (along ATTREX flight tracks) using the specific meteorology prevailing. Using the Community Atmosphere Model with Chemistry (CAM-Chem), we model that BrO and Br are the daytime dominant species. Integrated across all ATTREX flights BrO represents ~ 43 % and 48 % of daytime Bry abundance at 17 km over the Western and Eastern Pacific, respectively. The results also show zones where Br/BrO >1 depending on the solar zenith angle (SZA), ozone concentration and temperature. On the other hand, BrCl and BrONO 2 were found to be the dominant night-time species with ~ 61% and 56 % of abundance at 17 km over the Western and Eastern Pacific, respectively. The western-to-eastern differences in the partitioning of inorganic bromine are explained by different abundances of ozone (O3), nitrogen dioxide (NO2) , and total inorganic chlorine (Cly).Fil: Navarro, María A.. University of Miami; Estados UnidosFil: Saiz-lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Cuevas, Carlos Alberto. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Tecnologica Nacional. Facultad Regional Mendoza. Secretaría de Ciencia, Tecnología y Postgrado; ArgentinaFil: Atlas, Elliot. University of Miami; Estados UnidosFil: Rodriguez Lloeveras, Xavier. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; EspañaFil: Kinnison, Douglas E.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Lamarque, Jean Francois. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Tilmes, Simone. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Thornberry, Troy. State University of Colorado at Boulder; Estados Unidos. Earth System Research Laboratory; Estados UnidosFil: Rollins, Andrew. State University of Colorado at Boulder; Estados Unidos. Earth System Research Laboratory; Estados UnidosFil: Elkins, James W.. Earth System Research Laboratory; Estados UnidosFil: Hintsa, Eric J.. State University of Colorado at Boulder; Estados Unidos. Earth System Research Laboratory; Estados UnidosFil: Moore, Fred L.. State University of Colorado at Boulder; Estados Unidos. Earth System Research Laboratory; Estados Unido

    Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons

    Full text link
    We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electroweak gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.Comment: 39 pages, 4 figure

    Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain

    Get PDF
    AbstractDiabetes is a high risk factor for dementia. High glucose may be a risk factor for dementia even among persons without diabetes, and in transgenic animals it has been shown to cause a potentiation of indices that are pre-symptomatic of Alzheimer′s disease. To further elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes, we monitored the activation of mitogen-activated kinsase (MAPKs), c-jun NH2-terminal kinase (JNK), p38 MAP kinases (p38MAPK), and extracellular activating kinsae1/2 (ERK1/2) and the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brain of male leptin-receptor-deficient Zucker diabetic fatty (ZDF) rats and human neuroblastoma SH-SY5Y cells. Daily i.p. injection of CB3 to ZDF rats inhibited the phosphorylation of JNK and p38MAPK, and prevented the expression of thioredoxin-interacting-protein (TXNIP/TBP-2) in ZDF rat brain. Although plasma glucose/insulin remained high, CB3 also increased the phosphorylation of AMP-ribose activating kinase (AMPK) and inhibited p70S6K kinase in the brain. Both CB3 and CB4 reversed apoptosis induced by inhibiting thioredoxin reductase as monitored by decreasing caspase 3 cleavage and PARP dissociation in SH-SY5Y cells. The decrease in JNK and p38MAPK activity in the absence of a change in plasma glucose implies a decrease in oxidative or neuroinflammatory stress in the ZDF rat brain. CB3 not only attenuated MAPK phosphorylation and activated AMPK in the brain, but it also diminished apoptotic markers, most likely acting via the MAPK–AMPK–mTOR pathway. These results were correlated with CB3 and CB4 inhibiting inflammation progression and protection from oxidative stress induced apoptosis in human neuronal cells. We suggest that by attenuating neuro-inflammatory processes in the brain Trx1 mimetic peptides could become beneficial for preventing neurological disorders associated with diabetes
    corecore