76 research outputs found

    Fluctuating asymmetry and feather growth bars as biomarkers to assess the habitat quality of shade coffee farming for avian diversity conservation

    Get PDF
    Shade coffee farming has been promoted as a means of combining sustainable coffee production and biodiversity conservation. Supporting this idea, similar levels of diversity and abundance of birds have been found in shade coffee and natural forests. However, diversity and abundance are not always good indicators of habitat quality because there may be a lag before population effects are observed following habitat conversion. Therefore, other indicators of habitat quality should be tested. In this paper, we investigate the use of two biomarkers: fluctuating asymmetry (FA) of tarsus length and rectrix mass, and feather growth bars (average growth bar width) to characterize the habitat quality of shade coffee and natural forests. We predicted higher FA and narrower feather growth bars in shade coffee forest versus natural forest, indicating higher quality in the latter. We measured and compared FA in tarsus length and rectrix mass and average growth bar width in more than 200 individuals of five bird species. The extent of FA in both tarsus length and rectrix mass was not different between the two forest types in any of the five species. Similarly, we found no difference in feather growth between shade coffee and natural forests for any species. Therefore, we conclude our comparison of biomarkers suggests that shade coffee farms and natural forests provide similar habitat quality for the five species we examined

    Incentivizing monitoring and compliance in trophy hunting

    Get PDF
    Conservation scientists are increasingly focusing on the drivers of human behavior and on the implications of various sources of uncertainty for management decision making. Trophy hunting has been suggested as a conservation tool because it gives economic value to wildlife, but recent examples show that overharvesting is a substantial problem and that data limitations are rife. We use a case study of trophy hunting of an endangered antelope, the mountain nyala (Tragelaphus buxtoni), to explore how uncertainties generated by population monitoring and poaching interact with decision making by 2 key stakeholders: the safari companies and the government. We built a management strategy evaluation model that encompasses the population dynamics of mountain nyala, a monitoring model, and a company decision making model. We investigated scenarios of investment into antipoaching and monitoring by governments and safari companies. Harvest strategy was robust to the uncertainty in the population estimates obtained from monitoring, but poaching had a much stronger effect on quota and sustainability. Hence, reducing poaching is in the interests of companies wishing to increase the profitability of their enterprises, for example by engaging community members as game scouts. There is a threshold level of uncertainty in the population estimates beyond which the year-to-year variation in the trophy quota prevented planning by the safari companies. This suggests a role for government in ensuring that a baseline level of population monitoring is carried out such that this level is not exceeded. Our results illustrate the importance of considering the incentives of multiple stakeholders when designing frameworks for resource use and when designing management frameworks to address the particular sources of uncertainty that affect system sustainability most heavily

    Group size dynamics of the endangered mountain nyala (Tragelaphus buxtoni) in protected areas of the Arsi and Ahmar Mountains, Ethiopia

    Get PDF
    As an adaptive biological trait, group size may offer a useful metric for monitoring the welfare of wildlife species affected by their environmental surroundings. Here, we examine the drivers that cause variation in group size of the endangered mountain nyala (Tragelaphus buxtoni), including a range of natural ecological factors as well as the density of livestock. For this purpose, we collected data along transect lines during both wet and dry seasons focusing on the hitherto poorly studied populations in the Arsi Mountains National Park, Munessa-Kuke Controlled Hunting Area and Muktar Mountain Forest Reserve, which are managed for multiple use of a variety of natural resources. We found group sizes to be an average of 6.3, 4.4 and 4.1 individuals in the Arsi Mountains, Munessa-Kuke and Muktar Mountain study areas, respectively, and a combination of livestock density and habitat visibility explained as much as 74% of the variation in group size. We propose that whereas group size increases with forage availability (as measured by Normalized Difference Vegetation Index -NDVI) and in open habitats (probably due to a switch in antipredator strategy), the presence of livestock also has an independent, negative impact on group size because of the associated disturbance. The findings contribute to understanding the environmental drivers of variation in group size in social antelopes, particularly highlighting the need to improve livestock management to help conservation of species at risk

    Modeling habitat suitability for the lesser-known populations of endangered mountain nyala (<i>Tragelaphus buxtoni</i>) in the Arsi and Ahmar Mountains, Ethiopia.

    Get PDF
    Habitat suitability models have become a valuable tool for wildlife conservation and management, and are frequently used to better understand the range and habitat requirements of rare and endangered species. In this study, we employed two habitat suitability modeling techniques, namely Boosted Regression Tree (BRT) and Maximum Entropy (Maxent) models, to identify potential suitable habitats for the endangered mountain nyala (Tragelaphus buxtoni) and environmental factors affecting its distribution in the Arsi and Ahmar Mountains of Ethiopia. Presence points, used to develop our habitat suitability models, were recorded from fecal pellet counts (n = 130) encountered along 196 randomly established transects in 2015 and 2016. Predictor variables used in our models included major landcover types, Normalized Difference Vegetation Index (NDVI), greenness and wetness tasseled cap vegetation indices, elevation, and slope. Area Under the Curve model evaluations for BRT and Maxent were 0.96 and 0.95, respectively, demonstrating high performance. Both models were then ensembled into a single binary output highlighting an area of agreement. Our results suggest that 1864 km2 (9.1%) of the 20,567 km2 study area is suitable habitat for the mountain nyala with land cover types, elevation, NDVI, and slope of the terrain being the most important variables for both models. Our results highlight the extent to which habitat loss and fragmentation have disconnected mountain nyala subpopulations. Our models demonstrate the importance of further protecting suitable habitats for mountain nyala to ensure the species' conservation

    Pongamia seed cake as a valuable source of plant nutrients for sustainable agriculture

    Get PDF
    Pongamia, a multipurpose leguminous tree containing non-edible oil, grows widely in India. Oil extracted from the seeds of Pongamia is used as energy source as well as in tanneries while the cake (a byproduct after extracting oil) was found to be rich in all plant nutrients in general and nitrogen (4.28%) and sulfur (0.19%) in particular. Both nitrogen and sulfur were found to be deficient in 100 and 80%, respectively, in soil samples from farmers' fields in Powerguda village of Adilabad district, Andhra Pradesh, India. Use of Pongamia seed cake as a source of plant nutrients for maize, soyabean and cotton was found beneficial in participatory research and development trials on farmers' fields. Further, application of critically deficient micronutrients such as zinc and boron and secondary nutrient sulfur increased crop yields by 16.7 and 19% in soyabean and cotton, respectively. In addition, B:C ratios of 5.03, 1.81 and 2.04 were obtained for soyabean, maize and cotton, respectively, with use of cake as a source of N, however it needed higher initial investment

    The Cryptic African Wolf: Canis aureus lupaster Is Not a Golden Jackal and Is Not Endemic to Egypt

    Get PDF
    The Egyptian jackal (Canis aureus lupaster) has hitherto been considered a large, rare subspecies of the golden jackal (C. aureus). It has maintained its taxonomical status to date, despite studies demonstrating morphological similarities to the grey wolf (C. lupus). We have analyzed 2055 bp of mitochondrial DNA from C. a. lupaster and investigated the similarity to C. aureus and C. lupus. Through phylogenetic comparison with all wild wolf-like canids (based on 726 bp of the Cytochrome b gene) we conclusively (100% bootstrap support) place the Egyptian jackal within the grey wolf species complex, together with the Holarctic wolf, the Indian wolf and the Himalayan wolf. Like the two latter taxa, C. a. lupaster seems to represent an ancient wolf lineage which most likely colonized Africa prior to the northern hemisphere radiation. We thus refer to C. a. lupaster as the African wolf. Furthermore, we have detected C. a. lupaster individuals at two localities in the Ethiopian highlands, extending the distribution by at least 2,500 km southeast. The only grey wolf species to inhabit the African continent is a cryptic species for which the conservation status urgently needs assessment

    Strain diversity of Treponema pallidum subsp. pertenue suggests rare interspecies 4 transmission in African nonhuman primates

    Get PDF
    In our most recent study, we found that in Tanzania infection with Treponema pallidum (TP) subsp. pertenue (TPE) is present in four different monkey species. In order to gain information on the diversity and epidemiological spread of the infection in Tanzanian nonhuman primates (NHP), we identified two suitable candidate genes for multi-locus sequence typing (MLST). We demonstrate the functionality of the MLST system in invasively and non-invasively collected samples. While we were not able to demonstrate frequent interspecies transmission of TPE in Tanzanian monkeys, our results show a clustering of TPE strains according to geography and not host species, which is suggestive for rare transmission events between different NHP species. In addition to the geographic stability, we describe the relative temporal stability of the strains infecting NHPs and identified multi-strain infection. Differences between TPE strains of NHP and human origin are highlighted. Our results show that antibiotic resistance does not occur in Tanzanian TPE strains of nHp origin

    Landscape genetics and behavioural ecology of mountain nyala (Tragelaphus buxtoni) in the Southern highlands of Ethiopia

    Get PDF
    Many African wildlife species are at risk of extinction as a result of habitat loss and fragmentation associated with human influence. Among these is the endangered antelope, mountain nyala (Tragelaphus buxtoni), endemic to the highlands of southern Ethiopia. I implemented a multidisciplinary approach, including geographic information system (GIS), satellite image analysis and non-invasive genetics to provide basic knowledge required for the conservation this species. My study reveals new insight on the distribution and abundance of mountain nyala. I estimated the population to 3700 individuals and defined a 3200 km2 area of suitable habitat that needs to be prioritized for the future conservation of the species. The genetic data indicated that the gene flow between the different mountain nyala populations is limited. With the rapidly expanding human population in the Ethiopian highlands maintaining habitat connectivity will be important to protect the mountain nyala from extinction. I also discovered that the diet of the mountain nyala is more diverse than previously known. They were considered strict browsers (leaf eaters), but I documented a high degree of overlap between the grazing areas of livestock and the mountain nyala. This means that they are competing over resources and highlights that livestock should be restricted in areas where the mountain nyala is protected. This study furthermore shows that the mountain nyala seeks human settlements during nights to avoid spotted hyenas (Crocuta crocuta) that are nocturnal predators. We describe this phenomenon, through the “human shield hypothesis”, as a flexible strategy that can vary in space and time with relative differences in the levels of natural predation and human hunting. The approaches used in this thesis may be useful also for the study and conservation of other wildlife species inhabiting areas of increasing human encroachment

    Is <i>Colobus guereza gallarum</i> a valid endemic Ethiopian taxon?

    No full text
    Black-and-white colobus (Colobus guereza Rüppell, 1835) are arboreal Old World monkeys inhabiting large parts of the deciduous and evergreen forests of sub-Saharan Africa. Two of the eight subspecies of Colobus guereza are endemic to Ethiopia: C. g. gallarum and C. g. guereza. However, the validity of the Ethiopian taxa is debated and observed morphological differences were attributed to clinal variation within C. g. guereza. To date, no molecular phylogeny of the Ethiopian guerezas is available to facilitate their taxonomic classification. We used mitochondrial DNA markers from 94 samples collected across Ethiopia to reconstruct a phylogeny of respective mitochondrial lineages. In our phylogenetic reconstruction, augmented by orthologous sequence information of non-Ethiopian black-and-white colobus from GenBank, we found two major Ethiopian mitochondrial clades, with one being largely congruent with the distribution of C. g. guereza. The second clade was found only at two locations in the eastern part of the putative range of C. g. gallarum. This second lineage clustered with the lowland form, C. g. occidentalis, from central Africa, whereas the C. g. guereza lineages clustered with C. g. caudatus and C. g. kikuyuensis from Kenya and northern Tanzania. These two guereza lineages diverged around 0.7&thinsp;million years ago. In addition, mitochondrial sequence information does not support unequivocally a distinction of C. g. caudatus and C. g. kikuyuensis. Our findings indicate a previous biogeographic connection between the ranges of C. g. occidentalis and C. g. gallarum and a possible secondary invasion of Ethiopia by members of the C. g. guereza–C. g. caudatus–C. g. kikuyuensis clade. Given these phylogenetic relationships, our study supports the two-taxa hypothesis, making C. g. gallarum an Ethiopian endemic, and, in combination with the taxon's very restricted range, makes it one of the most endangered subspecies of black-and-white colobus.</p
    corecore