25 research outputs found

    Cell sorting in a Petri dish controlled by computer vision.

    Get PDF
    Fluorescence-activated cell sorting (FACS) applying flow cytometry to separate cells on a molecular basis is a widespread method. We demonstrate that both fluorescent and unlabeled live cells in a Petri dish observed with a microscope can be automatically recognized by computer vision and picked up by a computer-controlled micropipette. This method can be routinely applied as a FACS down to the single cell level with a very high selectivity. Sorting resolution, i.e., the minimum distance between two cells from which one could be selectively removed was 50-70 micrometers. Survival rate with a low number of 3T3 mouse fibroblasts and NE-4C neuroectodermal mouse stem cells was 66 +/- 12% and 88 +/- 16%, respectively. Purity of sorted cultures and rate of survival using NE-4C/NE-GFP-4C co-cultures were 95 +/- 2% and 62 +/- 7%, respectively. Hydrodynamic simulations confirmed the experimental sorting efficiency and a cell damage risk similar to that of normal FACS

    New type of microengine using internal combustion of hydrogen and oxygen

    Get PDF
    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100x100x5 um^3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 us in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.Comment: Paper and Supplementary Information (to appear in Scientific Reports

    Non-Linear Optical Flow Cytometry Using a Scanned, Bessel Beam Light-Sheet

    Get PDF
    Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers
    corecore