2,359 research outputs found
Rethinking Lavoix's Attribution of the Dinar dated 210 AH/AD 825-826
The paper aims at reconsidering a dinar attributed to the 'Abbasid caliph al-
Ma’rnun (198-218 AH/AD 813-833), first published in 1887 by the French
scholar H. Lavoix. Later on, this attribution was repeated, without questioning, by a number of scholars despite the fact that - at the beginning of the 20th
century - the Sicilian numismatist B. Lagumina had noticed that the legends
on the gold specimen in the BnF's coin cabinet were comparable to the silver
issues of the revolt leader Mansur b. Nasr al-Tunbudr. The author of this contribution proves, using historical sources and through a close scrutiny of the
known specimens, both in gold and silver, that the dinar catalogued by Lavoix
is a gold issue minted in al-Qayrawan by Mansar b. Nasr al-Tunbudr and that
it cannot be considered, as previously believed, as an Abbasid dinar
GVIPS Models and Software
Two reports discuss, respectively, (1) the generalized viscoplasticity with potential structure (GVIPS) class of mathematical models and (2) the Constitutive Material Parameter Estimator (COMPARE) computer program. GVIPS models are constructed within a thermodynamics- and potential-based theoretical framework, wherein one uses internal state variables and derives constitutive equations for both the reversible (elastic) and the irreversible (viscoplastic) behaviors of materials. Because of the underlying potential structure, GVIPS models not only capture a variety of material behaviors but also are very computationally efficient. COMPARE comprises (1) an analysis core and (2) a C++-language subprogram that implements a Windows-based graphical user interface (GUI) for controlling the core. The GUI relieves the user of the sometimes tedious task of preparing data for the analysis core, freeing the user to concentrate on the task of fitting experimental data and ultimately obtaining a set of material parameters. The analysis core consists of three modules: one for GVIPS material models, an analysis module containing a specialized finite-element solution algorithm, and an optimization module. COMPARE solves the problem of finding GVIPS material parameters in the manner of a design-optimization problem in which the parameters are the design variables
Viscoelastoplastic Deformation and Damage Response of Titanium Alloy, Ti-6Al-4V, at Elevated Temperatures
Time-dependent deformation and damage behavior can significantly affect the life of aerospace propulsion components. Consequently, one needs an accurate constitutive model that can represent both reversible and irreversible behavior under multiaxial loading conditions. This paper details the characterization and utilization of a multi-mechanism constitutive model of the GVIPS class (Generalized Viscoplastic with Potential Structure) that has been extended to describe the viscoelastoplastic deformation and damage of the titanium alloy Ti-6Al-4V. Associated material constants were characterized at five elevated temperatures where viscoelastoplastic behavior was observed, and at three elevated temperatures where damage (of both the stiffness reduction and strength reduction type) was incurred. Experimental data from a wide variety of uniaxial load cases were used to correlate and validate the proposed GVIPS model. Presented are the optimized material parameters, and the viscoelastoplastic deformation and damage responses at the various temperatures
An Overview of Prognosis Health Management Research at GRC for Gas Turbine Engine Structures With Special Emphasis on Deformation and Damage Modeling
Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include 1) diagnostic/detection methodology, 2) prognosis/lifing methodology, 3) diagnostic/prognosis linkage, 4) experimental validation and 5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multi-mechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system
The Integration of Microbial Inoculation and Organic Fertilization to Improve the Productivity of Wheat (Triticum Aestivum L.) in New Land
This study was conducted to investigate the integration between the microbial inoculation and organic fertilization to improve the wheat productivity. Therefore, two wheat varieties (Misr-1 and Seds-12) were tested under three rates (8, 10 and 12 tons/fed) of supported compost and various microbial inoculation treatments during of 2012/2013 and 2013/2014 seasons. The main obtained results revealed that the Misr-1 wheat variety recorded significant increases in yield and its components except average of grains number/spike during the two seasons. Moreover, the interaction among three experiment factors showed that Misr-1 wheat variety, 10 ton/fed of supported compost and microbial inoculation by Trichoderma + Bacillus subtilis gave the greatest values for number of spike/m2, spike weight, average grain weight per spike, 1000-grain weight, biological yield, total yield/fed and protein content. However, highest number of grains per spike were recorded with Seds-12 wheat variety and 10 tons/fed of supported compost + inoculated by Trichoderma + Bacillus subtilis
An Overview of Prognosis Health Management Research at Glenn Research Center for Gas Turbine Engine Structures With Special Emphasis on Deformation and Damage Modeling
Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include (1) diagnostic/detection methodology, (2) prognosis/lifing methodology, (3) diagnostic/prognosis linkage, (4) experimental validation, and (5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multimechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system
Underwater Multi-Node Radio Communication Solutions for Planetary Exploration
The exploration of the presumably life harboring subsurface ocean of Europa will provide scientists with extensive new knowledge in the search for extraterrestrial life. A highly miniaturized payload is required to penetrate a narrow passage through the thick ice crust covering Europa's surface. Underwater wireless communications may be the most viable means of communication for such exploratory missions, accounting for size and weight restrictions. This presents a challenge to achieve satisfactory data rates and a range that permits autonomous underwater vehicles (AUVs) to communicate within their region of operation, as well as with a surface lander or orbiter. This work presents thorough prototype experimentation on an underwater communication system established between several nodes using RF signals. During an eight-week internship experience at NASA's Ames Research Center in September-October 2014, our team developed a Europa exploration mission concept, built representative hardware, and carried out tests to assess the feasibility of key aspects of the concept. Experiments demonstrating the viability of RF communication underwater comprised inspecting the effect of depth and horizontal distance on signal strength as well as the optimum positioning of antennas. To test the system's performance, two submersibles were designed and built. A commercially available remotely operated vehicle (ROV) was also modified and used as a main communication node. The two submersibles were wirelessly connected and accommodated sensors capable of characterizing water properties and equipped with 2.4 GHz, 1 mW transceivers to communicate the measured data. The communication procedure is that the main communication node requests the collected data from the two submersibles when in range and receives it instantly through RF. This work models what may take place during an actual mission to Europa. The developed mission concept involved a hybrid communication system consisting of acoustic and RF signals to enhance the capability of the nodes to communicate over greater distances. The AUVs will need to avoid obstacles and maneuver around to collect data based on predefined algorithms. Thus, they will be provided with two positioning systems; the inertial navigation system, backed with an acoustic positioning system to mitigate drift. The AUVs divide the ocean into planes and explore along circular paths increasing in diameter with depth. Moreover, they make use of miniaturized sensors to map the surrounding environment. In this paper, the ROV and the submersibles are described, along with sections explaining the mechanism of communication and the testing procedures conducted to yield results
Power laws in microrheology experiments on living cells: comparative analysis and modelling
We compare and synthesize the results of two microrheological experiments on
the cytoskeleton of single cells. In the first one, the creep function J(t) of
a cell stretched between two glass plates is measured after applying a constant
force step. In the second one, a micrometric bead specifically bound to
transmembrane receptors is driven by an oscillating optical trap, and the
viscoelastic coefficient is retrieved. Both and
exhibit power law behavior: and , with the same exponent
. This power law behavior is very robust ; is
distributed over a narrow range, and shows almost no dependance on the cell
type, on the nature of the protein complex which transmits the mechanical
stress, nor on the typical length scale of the experiment. On the contrary, the
prefactors and appear very sensitive to these parameters. Whereas
the exponents are normally distributed over the cell population, the
prefactors and follow a log-normal repartition. These results are
compared with other data published in the litterature. We propose a global
interpretation, based on a semi-phenomenological model, which involves a broad
distribution of relaxation times in the system. The model predicts the power
law behavior and the statistical repartition of the mechanical parameters, as
experimentally observed for the cells. Moreover, it leads to an estimate of the
largest response time in the cytoskeletal network: s.Comment: 47 pages, 14 figures // v2: PDF file is now Acrobat Reader 4 (and up)
compatible // v3: Minor typos corrected - The presentation of the model have
been substantially rewritten (p. 17-18), in order to give more details -
Enhanced description of protocols // v4: Minor corrections in the text : the
immersion angles are estimated and not measured // v5: Minor typos corrected.
Two references were clarifie
Unexplained Female Infertility Alert Over Overt and Hidden Genital Infections
Female genital tract infections represents a real challenge for the gynecologists. The exact role of these infections in infertility induction is not clear. The impact of uterine infections on implantation is not clearly defined. This chapter will discuss the implication of overt as well as hidden genital tract infection among women with unexplained infertility. Whether these infections cause infertility or induced by infertility diagnostic as well as therapeutic procedures will be addressed. In short, this chapter will attract attention of gynecologists to put the possibility of genital tract infections in every case of infertility particularly cases with unexplained infertility
- …
