research

Viscoelastoplastic Deformation and Damage Response of Titanium Alloy, Ti-6Al-4V, at Elevated Temperatures

Abstract

Time-dependent deformation and damage behavior can significantly affect the life of aerospace propulsion components. Consequently, one needs an accurate constitutive model that can represent both reversible and irreversible behavior under multiaxial loading conditions. This paper details the characterization and utilization of a multi-mechanism constitutive model of the GVIPS class (Generalized Viscoplastic with Potential Structure) that has been extended to describe the viscoelastoplastic deformation and damage of the titanium alloy Ti-6Al-4V. Associated material constants were characterized at five elevated temperatures where viscoelastoplastic behavior was observed, and at three elevated temperatures where damage (of both the stiffness reduction and strength reduction type) was incurred. Experimental data from a wide variety of uniaxial load cases were used to correlate and validate the proposed GVIPS model. Presented are the optimized material parameters, and the viscoelastoplastic deformation and damage responses at the various temperatures

    Similar works