27 research outputs found

    Whole blood transcriptome changes following controlled human malaria infection in malaria pre-exposed volunteers correlate with parasite prepatent period

    Get PDF
    Malaria continues to be one of mankind's most devastating diseases despite the many and varied efforts to combat it. Indispensable for malaria elimination and eventual eradication is the development of effective vaccines. Controlled human malaria infection (CHMI) is an invaluable tool for vaccine efficacy assessment and investigation of early immunological and molecular responses against Plasmodium falciparum infection. Here, we investigated gene expression changes following CHMI using RNA-Seq. Peripheral blood samples were collected in Bagamoyo, Tanzania, from ten adults who were injected intradermally (ID) with 2.5x104 aseptic, purified, cryopreserved P. falciparum sporozoites (Sanaria® PfSPZ Challenge). A total of 2,758 genes were identified as differentially expressed following CHMI. Transcriptional changes were most pronounced on day 5 after inoculation, during the clinically silent liver phase. A secondary analysis, grouping the volunteers according to their prepatent period duration, identified 265 genes whose expression levels were linked to time of blood stage parasitemia detection. Gene modules associated with these 265 genes were linked to regulation of transcription, cell cycle, phosphatidylinositol signaling and erythrocyte development. Our study showed that in malaria pre-exposed volunteers, parasite prepatent period in each individual is linked to magnitude and timing of early gene expression changes after ID CHMI

    Comparative Proteomic Analysis of Lysine Acetylation in Trypanosomes

    No full text
    Protein acetylation is a post-translational modification regulating diverse cellular processes. By using proteomic approaches, we identified N-terminal and ε-lysine acetylated proteins in <i>Trypanosoma cruzi</i> and <i>Trypanosoma brucei</i>, which are protozoan parasites that cause significant human and animal diseases. We detected 288 lysine acetylation sites in 210 proteins of procyclic form, an insect stage of <i>T. brucei</i>, and 380 acetylation sites in 285 proteins in the form of the parasite that replicates in mammalian bloodstream. In <i>T. cruzi</i> insect proliferative form we found 389 ε-lysine-acetylated sites in 235 proteins. Notably, we found distinct acetylation profiles according to the developmental stage and species, with only 44 common proteins between <i>T. brucei</i> stages and 18 in common between the two species. While K-ac proteins from <i>T. cruzi</i> are enriched in enzymes involved in oxidation/reduction balance, required for the parasite survival in the host, in <i>T. brucei</i>, most K-ac proteins are enriched in metabolic processes, essential for its adaptation in its hosts. We also identified in both parasites a quite variable N-terminal acetylation sites. Our results suggest that protein acetylation is involved in differential regulation of multiple cellular processes in Trypanosomes, contributing to our understanding of the essential mechanisms for parasite infection and survival

    Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty.

    Get PDF
    Two key biological features distinguish Trypanosoma evansi from the T. brucei group: independence from the tsetse fly as obligatory vector, and independence from the need for functional mitochondrial DNA (kinetoplast or kDNA). In an effort to better understand the molecular causes and consequences of these differences, we sequenced the genome of an akinetoplastic T. evansi strain from China and compared it to the T. b. brucei reference strain. The annotated T. evansi genome shows extensive similarity to the reference, with 94.9% of the predicted T. b. brucei coding sequences (CDS) having an ortholog in T. evansi, and 94.6% of the non-repetitive orthologs having a nucleotide identity of 95% or greater. Interestingly, several procyclin-associated genes (PAGs) were disrupted or not found in this T. evansi strain, suggesting a selective loss of function in the absence of the insect life-cycle stage. Surprisingly, orthologous sequences were found in T. evansi for all 978 nuclear CDS predicted to represent the mitochondrial proteome in T. brucei, although a small number of these may have lost functionality. Consistent with previous results, the F1FO-ATP synthase γ subunit was found to have an A281 deletion, which is involved in generation of a mitochondrial membrane potential in the absence of kDNA. Candidates for CDS that are absent from the reference genome were identified in supplementary de novo assemblies of T. evansi reads. Phylogenetic analyses show that the sequenced strain belongs to a dominant group of clonal T. evansi strains with worldwide distribution that also includes isolates classified as T. equiperdum. At least three other types of T. evansi or T. equiperdum have emerged independently. Overall, the elucidation of the T. evansi genome sequence reveals extensive similarity of T. brucei and supports the contention that T. evansi should be classified as a subspecies of T. brucei

    DE genes determined by limma pairwise visit comparison.

    No full text
    <p>DE was pronounced at a BH-adjusted p-value < 0.05 and >1.5 fold expression change. (a) DE genes (red: up-regulated genes, blue: down-regulated genes) identified for each tested contrast are visualized as bars. The number of DE genes per contrast is indicated and additionally emphasized by the length of the bars. The bar width / x-axis indicates the log2 fold expression change of each DE gene. The Venn diagrams display the overlaps between (b) all DE genes of contrasts 5/0 and 9/5, (c) the 5/0 up-regulated and 9/5 down-regulated DE genes and (d) the 5/0 down-regulated and 9/5 up-regulated DE genes.</p
    corecore