1,682 research outputs found
Clusters of Exceptional Points for a Laser Control of Selective Vibrational Transfer
When a molecule is exposed to a laser field, all field-free vibrational
states become resonances, with complex quasi energies calculated using Floquet
theory. There are many ways to produce the coalescences of pairs of such quasi
energies, with appropriate wavelength-intensity choices which define
Exceptional Points (EP) in the laser parameter plane. We dress for the
molecular ion H an exhaustive map of these exceptional points which
appear in clusters. Such clusters can be used to define several vibrational
transfer scenarios implying more than a single exceptional point, exchanging
single or multiple vibrational quanta. The ultimate goal is molecular
vibrational cooling by transferring an initial (thermal, for instance)
population on a final (ground, for instance) single vibrational state. When a
molecule is exposed to a laser field, all field-free vibrational states become
resonances, with complex quasi energies calculated using Floquet theory. There
are many ways to produce the coalescences of pairs of such quasi energies, with
appropriate wavelength-intensity choices which define Exceptional Points (EP)
in the laser parameter plane. We dress for the molecular ion H an
exhaustive map of these exceptional points which appear in clusters. Such
clusters can be used to define several vibrational transfer scenarios implying
more than a single exceptional point, exchanging single or multiple vibrational
quanta. The ultimate goal is molecular vibrational cooling by transferring an
initial (thermal, for instance) population on a final (ground, for instance)
single vibrational state.Comment: 16 pages, 7 figures, 1 tabl
Bell-type inequalities for cold heteronuclear molecules
We introduce Bell-type inequalities allowing for non-locality and
entanglement tests with two cold heteronuclear molecules. The proposed
inequalities are based on correlations between each molecule spatial
orientation, an observable which can be experimentally measured with present
day technology. Orientation measurements are performed on each subsystem at
diferent times. These times play the role of the polarizer angles in Bell tests
realized with photons. We discuss the experimental implementations of the
proposed tests, which could also be adapted to other high dimensional quantum
angular momenta systems.Comment: 4 page
Anisotropy Control in Photoelectron Spectra: A Coherent Two-Pulse Interference Strategy
Coherence among rotational ion channels during photoionization is exploited
to control the anisotropy of the resulting photoelectron angular distributions
at specific photoelectron energies. The strategy refers to a robust and single
parameter control using two ultra-short light pulses delayed in time. The first
pulse prepares a superposition of a few ion rotational states, whereas the
second pulse serves as a probe that gives access to a control of the molecular
asymmetry parameter for individual rotational channels. This is
achieved by tuning the time delay between the pulses leading to channel
interferences that can be turned from constructive to destructive. The
illustrative example is the ionization of the state of
Li. Quantum wave packet evolutions are conducted including both
electronic and nuclear degrees of freedom to reach angle-resolved photoelectron
spectra. A simple interference model based on coherent phase accumulation
during the field-free dynamics between the two pulses is precisely exploited to
control the photoelectron angular distributions from almost isotropic, to
marked anisotropic
Ahmet Vefik Paşa'ya ipek çarşaf işkencesi...
Taha Toros Arşivi, Dosya No: 117-Ahmet Vefik Paşa.
Not: Derginin "Tarihten Mozaikler" köşesinde yayımlanmıştır.İstanbul Kalkınma Ajansı (TR10/14/YEN/0033) İstanbul Development Agency (TR10/14/YEN/0033
Dipole-Induced Electromagnetic Transparency
We determine the optical response of a thin and dense layer of interacting
quantum emitters. We show that in such a dense system, the Lorentz redshift and
the associated interaction broadening can be used to control the transmission
and reflection spectra. In the presence of overlapping resonances, a
Dipole-Induced Electromagnetic Transparency (DIET) regime, similar to
Electromagnetically Induced Transparency (EIT), may be achieved. DIET relies on
destructive interference between the electromagnetic waves emitted by quantum
emitters. Carefully tuning material parameters allows to achieve narrow
transmission windows in otherwise completely opaque media. We analyze in
details this coherent and collective effect using a generalized Lorentz model
and show how it can be controlled. Several potential applications of the
phenomenon, such as slow light, are proposed
Controlling vibrational cooling with Zero-Width Resonances: An adiabatic Floquet approach
In molecular photodissociation, some specific combinations of laser
parameters (wavelength and intensity) lead to unexpected Zero-Width Resonances
(ZWR), with in principle infinite lifetimes. Their interest in inducing basic
quenching mechanisms have recently been devised in the laser control of
vibrational cooling through filtration strategies [O. Atabek et al., Phys. Rev.
A87, 031403(R) (2013)]. A full quantum adiabatic control theory based on the
adiabatic Floquet Hamiltonian is developed to show how a laser pulse could be
envelop-shaped and frequency-chirped so as to protect a given initial
vibrational state against dissociation, taking advantage from its continuous
transport on the corresponding ZWR, all along the pulse duration. As compared
with previous control scenarios actually suffering from non-adiabatic
contamination, drastically different and much more efficient filtration goals
are achieved. A semiclassical analysis helps in finding and interpreting a
complete map of ZWRs in the laser parameter plane. In addition, the choice of a
given ZWR path, among the complete series identified by the semiclassical
approach, amounts to be crucial for the cooling scheme, targeting a single
vibrational state population left at the end of the pulse, while all others
have almost completely decayed. The illustrative example, offering the
potentiality to be transposed to other diatomics, is Na2 prepared by
photoassociation in vibrationally hot but translationally and rotationally cold
states.Comment: 15 pages, 14 figure
Molecular orientation entanglement and temporal Bell-type inequalities
We detail and extend the results of [Milman {\it et al.}, Phys. Rev. Lett.
{\bf 99}, 130405 (2007)] on Bell-type inequalities based on correlations
between measurements of continuous observables performed on trapped molecular
systems. We show that for some observables with a continuous spectrum which is
bounded, one is able to construct non-locality tests sharing common properties
with those for two-level systems. The specific observable studied here is
molecular spatial orientation, and it can be experimentally measured for single
molecules, as required in our protocol. We also provide some useful general
properties of the derived inequalities and study their robustness to noise.
Finally, we detail possible experimental scenarii and analyze the role played
by different experimental parameters.Comment: 10 pages and 5 figure
- …
